1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Setoid)
module Cfe.Judgement.Properties
{c ℓ} (over : Setoid c ℓ)
where
open import Cfe.Expression over
open import Cfe.Judgement.Base over
open import Cfe.Type over
open import Data.Empty
open import Data.Fin as F hiding (cast)
open import Data.Fin.Properties
open import Data.Nat as ℕ
open import Data.Nat.Properties as NP
open import Data.Vec
open import Data.Vec.Properties
open import Function
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
private
raise-mono : ∀ {m n i j} → i F.≤ j → raise {n} m i F.≤ raise m j
raise-mono {zero} i≤j = i≤j
raise-mono {suc m} i≤j = s≤s (raise-mono i≤j)
raise≤ : ∀ {m} n i → n ℕ.≤ toℕ (raise {m} n i)
raise≤ zero i = z≤n
raise≤ (suc n) i = s≤s (raise≤ n i)
inject+≤raise : ∀ {m n} i j → inject+ {suc n} m i F.≤ F.cast (+-suc n m) (raise {suc m} n j)
inject+≤raise {m} {n} i j = begin
toℕ (inject+ m i) ≡˘⟨ toℕ-inject+ m i ⟩
toℕ i ≤⟨ NP.<⇒≤pred (toℕ<n i) ⟩
n ≤⟨ m≤m+n n (toℕ j) ⟩
n ℕ.+ toℕ j ≡˘⟨ toℕ-raise n j ⟩
toℕ (raise n j) ≡˘⟨ toℕ-cast (+-suc n m) (raise n j) ⟩
toℕ (F.cast _ (raise n j)) ∎
where
open ≤-Reasoning
toℕ-punchIn : ∀ {m} i j → toℕ j ℕ.≤ toℕ (punchIn {m} i j)
toℕ-punchIn zero j = n≤1+n (toℕ j)
toℕ-punchIn (suc i) zero = z≤n
toℕ-punchIn (suc i) (suc j) = s≤s (toℕ-punchIn i j)
toℕ-punchOut : ∀ {m i j} → (i≢j : i ≢ j) → toℕ j ℕ.≤ suc (toℕ (punchOut {m} i≢j))
toℕ-punchOut {_} {zero} {zero} i≢j = ⊥-elim (i≢j refl)
toℕ-punchOut {_} {zero} {suc j} i≢j = NP.≤-refl
toℕ-punchOut {suc m} {suc i} {zero} i≢j = z≤n
toℕ-punchOut {suc m} {suc i} {suc j} i≢j = s≤s (toℕ-punchOut (i≢j ∘ cong suc))
toℕ-reduce : ∀ {m n} i i≥m → toℕ (reduce≥ {m} {n} i i≥m) ≡ toℕ i ∸ m
toℕ-reduce {zero} i i≥m = refl
toℕ-reduce {suc m} (suc i) (s≤s i≥m) = toℕ-reduce i i≥m
<⇒punchOut≤ : ∀ {m n i j} → n ℕ.< toℕ j → (i≢j : i ≢ j) → n ℕ.≤ toℕ (punchOut {m} i≢j)
<⇒punchOut≤ {m} {n} {zero} {suc j} (s≤s n<j) i≢j = n<j
<⇒punchOut≤ {suc m} {zero} {suc i} {suc j} (s≤s n<j) i≢j = z≤n
<⇒punchOut≤ {suc m} {suc n} {suc i} {suc j} (s≤s n<j) i≢j = s≤s (<⇒punchOut≤ n<j (i≢j ∘ cong suc))
punchIn-∸ : ∀ {m n} i {j} j≥n → toℕ (punchIn (F.cast (+-suc n m) (raise n i)) j) ∸ n ≡ toℕ (punchIn i (reduce≥ j j≥n))
punchIn-∸ {zero} {n} zero {j} j≥n = ⊥-elim (<⇒≱ (begin-strict
toℕ j ≡˘⟨ toℕ-cast (+-identityʳ n) j ⟩
toℕ (F.cast _ j) <⟨ toℕ<n (F.cast _ j) ⟩
n ∎) j≥n)
where
open ≤-Reasoning
punchIn-∸ {suc m} {zero} zero {j} z≤n = refl
punchIn-∸ {suc m} {suc n} zero {suc j} (s≤s j≥n) = punchIn-∸ zero j≥n
punchIn-∸ {suc m} {zero} (suc i) {zero} z≤n = refl
punchIn-∸ {suc m} {zero} (suc i) {suc j} z≤n = cong suc (punchIn-∸ i z≤n)
punchIn-∸ {suc m} {suc n} (suc i) {suc j} (s≤s j≥n) = punchIn-∸ (suc i) j≥n
≅-refl : ∀ {a A m} {xs : Vec {a} A m} → xs ≅ xs
≅-refl {xs = []} = []≅[]
≅-refl {xs = x ∷ xs} = refl ∷ ≅-refl
≅-reflexive : ∀ {a A m} {xs : Vec {a} A m} {ys} → xs ≡ ys → xs ≅ ys
≅-reflexive refl = ≅-refl
≅-length : ∀ {a A m n} {xs : Vec {a} A m} {ys : Vec _ n} → xs ≅ ys → m ≡ n
≅-length []≅[] = refl
≅-length (_ ∷ xs≅ys) = cong suc (≅-length xs≅ys)
≅-vcast : ∀ {a A m n} {xs : Vec {a} A m} → .(m≡n : m ≡ n) → vcast m≡n xs ≅ xs
≅-vcast {n = zero} {[]} m≡n = []≅[]
≅-vcast {n = suc n} {x ∷ xs} m≡n = refl ∷ ≅-vcast (NP.suc-injective m≡n)
≅⇒≡ : ∀ {a A m n} {xs : Vec {a} A m} {ys : Vec _ n} → (xs≅ys : xs ≅ ys) → vcast (≅-length xs≅ys) xs ≡ ys
≅⇒≡ []≅[] = refl
≅⇒≡ (x≡y ∷ xs≅ys) = cong₂ _∷_ x≡y (≅⇒≡ xs≅ys)
++ˡ : ∀ {a A m n k} {xs : Vec {a} A m} {ys : Vec _ n} (zs : Vec _ k) → xs ≅ ys → zs ++ xs ≅ zs ++ ys
++ˡ [] xs≅ys = xs≅ys
++ˡ (z ∷ zs) xs≅ys = refl ∷ ++ˡ zs xs≅ys
cast₁ : ∀ {m₁ m₂ n} {Γ₁ : Vec _ m₁} {Γ₂ : Vec _ m₂} {Δ : Vec _ n} {e τ} → (eq : Γ₁ ≅ Γ₂) → Γ₁ , Δ ⊢ e ∶ τ → Γ₂ , Δ ⊢ cast (cong (n ℕ.+_) (≅-length eq)) e ∶ τ
cast₁ eq Eps = Eps
cast₁ eq (Char c) = Char c
cast₁ eq Bot = Bot
cast₁ {n = n} {Γ₁} {Δ = Δ} eq (Var {i = i} i≥n) =
subst₂ (_, Δ ⊢ cast (cong (n ℕ.+_) (≅-length eq)) (Var i) ∶_)
(≅⇒≡ eq)
(eq′ Γ₁ i≥n (≅-length eq))
(Var (ge (≅-length eq) i≥n))
where
open import Data.Empty using (⊥-elim)
open import Data.Fin.Properties using (toℕ<n; toℕ-cast; toℕ-injective)
open import Data.Nat.Properties using (<⇒≱; +-identityʳ; module ≤-Reasoning)
ge : ∀ {m₁ m₂ n i} → .(eq : m₁ ≡ m₂) → toℕ {n ℕ.+ m₁} i ≥ n → toℕ (F.cast (cong (n ℕ.+_) eq) i) ≥ n
ge {n = ℕ.zero} {i} _ _ = z≤n
ge {n = suc n} {suc i} eq (s≤s i≥n) = s≤s (ge eq i≥n)
eq′ : ∀ {a A m₁ m₂ n i} Γ i≥n → (eq : m₁ ≡ m₂) → lookup {a} {A} {m₂} (vcast eq Γ) (reduce≥ {n} (F.cast (cong (n ℕ.+_) eq) i) (ge eq i≥n)) ≡ lookup Γ (reduce≥ i i≥n)
eq′ {m₁ = ℕ.zero} {ℕ.zero} {n} {i} Γ i≥n _ = ⊥-elim (<⇒≱ (begin-strict
toℕ i <⟨ toℕ<n i ⟩
n ℕ.+ 0 ≡⟨ +-identityʳ n ⟩
n ∎) i≥n)
where
open ≤-Reasoning
eq′ {m₁ = suc m₁} {suc m₁} {ℕ.zero} {i} Γ i≥n refl = cong₂ lookup {vcast refl Γ} (≅⇒≡ ≅-refl) (toℕ-injective (toℕ-cast refl i))
eq′ {m₁ = suc m₁} {suc m₂} {suc n} {suc i} Γ (s≤s i≥n) eq = eq′ Γ i≥n eq
cast₁ eq (Fix Γ₁,τ∷Δ⊢e∶τ) = Fix (cast₁ eq Γ₁,τ∷Δ⊢e∶τ)
cast₁ {Δ = Δ} eq (Cat Γ₁,Δ⊢e₁∶τ₁ Δ++Γ₁,∙⊢e₂∶τ₂ τ₁⊛τ₂) = Cat (cast₁ eq Γ₁,Δ⊢e₁∶τ₁) (cast₁ (++ˡ Δ eq) Δ++Γ₁,∙⊢e₂∶τ₂) τ₁⊛τ₂
cast₁ eq (Vee Γ₁,Δ⊢e₁∶τ₁ Γ₁,Δ⊢e₂∶τ₂ τ₁#τ₂) = Vee (cast₁ eq Γ₁,Δ⊢e₁∶τ₁) (cast₁ eq Γ₁,Δ⊢e₂∶τ₂) τ₁#τ₂
wkn₁ : ∀ {m n} {Γ : Vec _ m} {Δ : Vec _ n} {e τ} →
Γ , Δ ⊢ e ∶ τ →
∀ τ′ i →
insert Γ i τ′ , Δ ⊢ cast (sym (+-suc n m)) (wkn e (F.cast (+-suc n m) (raise n i))) ∶ τ
wkn₁ Eps τ′ i = Eps
wkn₁ (Char c) τ′ i = Char c
wkn₁ Bot τ′ i = Bot
wkn₁ {m} {n} {Γ} {Δ} {e} {τ} (Var {i = j} j≥n) τ′ i =
subst (insert Γ i τ′ , Δ ⊢ cast (sym (+-suc n m)) (Var (punchIn (F.cast (+-suc n m) (raise n i)) j)) ∶_)
eq
(Var le)
where
le : toℕ (F.cast _ (punchIn (F.cast _ (raise n i)) j)) ≥ n
le = begin
n ≤⟨ j≥n ⟩
toℕ j ≤⟨ toℕ-punchIn (F.cast (+-suc n m) (raise n i)) j ⟩
toℕ (punchIn (F.cast _ (raise n i)) j) ≡˘⟨ toℕ-cast (sym (+-suc n m)) (punchIn (F.cast _ (raise n i)) j) ⟩
toℕ (F.cast _ (punchIn (F.cast _ (raise n i)) j)) ∎
where
open ≤-Reasoning
lookup-cast : ∀ {a A n} l j → lookup {a} {A} {n} l (F.cast refl j) ≡ lookup l j
lookup-cast l zero = refl
lookup-cast (x ∷ l) (suc j) = lookup-cast l j
missing-link : reduce≥ (F.cast _ (punchIn (F.cast _ (raise n i)) j)) le ≡ punchIn i (reduce≥ j j≥n)
missing-link = toℕ-injective (begin
toℕ (reduce≥ (F.cast _ (punchIn (F.cast _ (raise n i)) j)) le) ≡⟨ toℕ-reduce (F.cast _ (punchIn (F.cast _ (raise n i)) j)) le ⟩
toℕ (F.cast _ (punchIn (F.cast _ (raise n i)) j)) ∸ n ≡⟨ cong (_∸ n) (toℕ-cast _ (punchIn (F.cast _ (raise n i)) j)) ⟩
toℕ (punchIn (F.cast _ (raise n i)) j) ∸ n ≡⟨ punchIn-∸ i j≥n ⟩
toℕ (punchIn i (reduce≥ j j≥n)) ∎)
where
open ≡-Reasoning
eq : lookup (insert Γ i τ′) (reduce≥ (F.cast _ (punchIn (F.cast _ (raise n i)) j)) le) ≡ lookup Γ (reduce≥ j j≥n)
eq = begin
lookup (insert Γ i τ′) (reduce≥ (F.cast _ (punchIn (F.cast _ (raise n i)) j)) le) ≡⟨ cong (lookup (insert Γ i τ′)) missing-link ⟩
lookup (insert Γ i τ′) (punchIn i (reduce≥ j j≥n)) ≡⟨ insert-punchIn Γ i τ′ (reduce≥ j j≥n) ⟩
lookup Γ (reduce≥ j j≥n) ∎
where
open ≡-Reasoning
wkn₁ (Fix Γ,τ∷Δ⊢e∶τ) τ′ i = Fix (wkn₁ Γ,τ∷Δ⊢e∶τ τ′ i)
wkn₁{m} {n} {Γ} {Δ} (Cat {e₂ = e₂} {τ₂ = τ₂} Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) τ′ i =
Cat (wkn₁ Γ,Δ⊢e₁∶τ₁ τ′ i)
(subst (λ x → Δ ++ insert Γ i τ′ , [] ⊢ x ∶ τ₂)
(begin
cast _ (cast _ (wkn e₂ (F.cast refl (raise zero (F.cast _ (raise n i)))))) ≡⟨⟩
cast _ (cast _ (wkn e₂ (F.cast refl (F.cast _ (raise n i))))) ≡⟨ cast-involutive (wkn e₂ (F.cast refl (F.cast _ (raise n i)))) refl (sym (+-suc n m)) (sym (+-suc n m)) ⟩
cast _ (wkn e₂ (F.cast refl (F.cast _ (raise n i)))) ≡⟨ cong (λ x → cast (sym (+-suc n m)) (wkn e₂ x)) (fcast-involutive (raise n i) (+-suc n m) refl (+-suc n m)) ⟩
cast _ (wkn e₂ (F.cast _ (raise n i))) ∎)
(cast₁ (eq Γ Δ τ′ i) (wkn₁ Δ++Γ,∙⊢e₂∶τ₂ τ′ (F.cast (+-suc n m) (raise n i)))))
τ₁⊛τ₂
where
open ≡-Reasoning
eq : ∀ {a A m n} Γ Δ τ′ i → insert (Δ ++ Γ) (F.cast (+-suc n m) (raise n i)) τ′ ≅ Δ ++ insert {a} {A} {m} Γ i τ′
eq Γ [] τ′ zero = ≅-refl
eq (x ∷ Γ) [] τ′ (suc i) = refl ∷ eq Γ [] τ′ i
eq Γ (x ∷ Δ) τ′ i = refl ∷ (eq Γ Δ τ′ i)
fcast-involutive : ∀ {k m n} i → .(k≡m : k ≡ m) → .(m≡n : m ≡ n) → .(k≡n : k ≡ n) → F.cast m≡n (F.cast k≡m i) ≡ F.cast k≡n i
fcast-involutive i k≡m m≡n k≡n = toℕ-injective (begin
toℕ (F.cast m≡n (F.cast k≡m i)) ≡⟨ toℕ-cast m≡n (F.cast k≡m i) ⟩
toℕ (F.cast k≡m i) ≡⟨ toℕ-cast k≡m i ⟩
toℕ i ≡˘⟨ toℕ-cast k≡n i ⟩
toℕ (F.cast k≡n i) ∎)
wkn₁ (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) τ′ i = Vee (wkn₁ Γ,Δ⊢e₁∶τ₁ τ′ i) (wkn₁ Γ,Δ⊢e₂∶τ₂ τ′ i) τ₁#τ₂
wkn₂ : ∀ {m n} {Γ : Vec _ m} {Δ : Vec _ n} {e τ} →
Γ , Δ ⊢ e ∶ τ →
∀ τ′ i →
Γ , insert Δ i τ′ ⊢ wkn e (inject+ m i) ∶ τ
wkn₂ Eps τ′ i = Eps
wkn₂ (Char c) τ′ i = Char c
wkn₂ Bot τ′ i = Bot
wkn₂ {m} {n} {Γ} {Δ} (Var {i = j} j≥n) τ′ i =
subst (Γ , insert Δ i τ′ ⊢_∶ lookup Γ (reduce≥ j j≥n))
(cong Var (toℕ-injective (begin-equality
toℕ (suc j) ≡⟨⟩
suc (toℕ j) ≡˘⟨ cong toℕ (punchIn-suc i≤j) ⟩
toℕ (punchIn (inject+ m i) j) ∎)))
(Var (s≤s j≥n))
where
open ≤-Reasoning
i≤j : toℕ (inject+ m i) ℕ.≤ toℕ j
i≤j = begin
toℕ (inject+ m i) ≡˘⟨ toℕ-inject+ m i ⟩
toℕ i ≤⟨ NP.<⇒≤pred (toℕ<n i) ⟩
n ≤⟨ j≥n ⟩
toℕ j ∎
punchIn-suc : ∀ {m i j} → toℕ i ℕ.≤ toℕ j → punchIn {m} i j ≡ suc j
punchIn-suc {_} {zero} {j} i≤j = refl
punchIn-suc {_} {suc i} {suc j} (s≤s i≤j) = cong suc (punchIn-suc i≤j)
wkn₂ (Fix Γ,τ∷Δ⊢e∶τ) τ′ i = Fix (wkn₂ Γ,τ∷Δ⊢e∶τ τ′ (suc i))
wkn₂ {m} {n} {Γ} {Δ} (Cat {e₂ = e₂} {τ₂ = τ₂} Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) τ′ i =
Cat (wkn₂ Γ,Δ⊢e₁∶τ₁ τ′ i)
(subst (insert Δ i τ′ ++ Γ , [] ⊢_∶ τ₂)
(begin
cast refl (cast refl (wkn e₂ (F.cast refl (inject+ m i)))) ≡⟨ cast-inverse (wkn e₂ (F.cast refl (inject+ m i))) refl refl ⟩
wkn e₂ (F.cast refl (inject+ m i)) ≡⟨ cong (wkn e₂) (toℕ-injective (toℕ-cast refl (inject+ m i))) ⟩
wkn e₂ (inject+ m i) ∎)
(cast₁ (≅-reflexive (eq Γ Δ τ′ i)) (wkn₁ Δ++Γ,∙⊢e₂∶τ₂ τ′ (inject+ m i))))
τ₁⊛τ₂
where
open ≡-Reasoning
eq : ∀ {a A m n} Γ Δ τ i → insert (Δ ++ Γ) (inject+ m i) τ ≡ insert {a} {A} {n} Δ i τ ++ Γ
eq Γ Δ τ zero = refl
eq Γ (_ ∷ Δ) τ (suc i) = cong₂ _∷_ refl (eq Γ Δ τ i)
wkn₂ (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) τ′ i = Vee (wkn₂ Γ,Δ⊢e₁∶τ₁ τ′ i) (wkn₂ Γ,Δ⊢e₂∶τ₂ τ′ i) τ₁#τ₂
|