summaryrefslogtreecommitdiff
path: root/src/Cfe/Judgement/Properties.agda
blob: b5183eb5c3729a01848a5cf055e9f11cd4e9cb75 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
{-# OPTIONS --without-K --safe #-}

open import Relation.Binary using (Setoid)

module Cfe.Judgement.Properties
  {c ℓ} (over : Setoid c ℓ)
  where

open import Cfe.Expression over
open import Cfe.Judgement.Base over
open import Cfe.Type over
open import Data.Empty
open import Data.Fin as F hiding (cast)
open import Data.Fin.Properties
open import Data.Nat as ℕ
open import Data.Nat.Properties
open import Data.Vec
open import Data.Vec.Properties
open import Function
open import Relation.Binary.PropositionalEquality

wkn₁ : ∀ {m n} {Γ : Vec (Type ℓ ℓ) m} {Δ : Vec (Type ℓ ℓ) n} {e τ} →
       Γ , Δ ⊢ e ∶ τ →
       ∀ τ′ i →
       insert Γ i τ′ , Δ ⊢ cast (sym (+-suc n m)) (wkn e (F.cast (+-suc n m) (raise n i))) ∶ τ
wkn₁ Eps τ′ i = Eps
wkn₁ (Char c) τ′ i = Char c
wkn₁ Bot τ′ i = Bot
wkn₁ {m} {n} {Γ} {Δ} {e} {τ} (Var {i = j} j≥n) τ′ i =
  subst (insert Γ i τ′ , Δ ⊢ cast (sym (+-suc n m)) (Var (punchIn (F.cast (+-suc n m) (raise n i)) j)) ∶_)
        (eq Γ τ′ i j≥n)
        (Var (le i j≥n))
  where
  toℕ-punchIn : ∀ {m} i j → toℕ j ℕ.≤ toℕ (punchIn {m} i j)
  toℕ-punchIn zero j = n≤1+n (toℕ j)
  toℕ-punchIn (suc i) zero = z≤n
  toℕ-punchIn (suc i) (suc j) = s≤s (toℕ-punchIn i j)

  le : ∀ {m n} i {j} → toℕ j ≥ n → toℕ (F.cast (sym (+-suc n m)) (punchIn (F.cast (+-suc n m) (raise n i)) j)) ≥ n
  le {m} {n} i {j} j≥n = begin
    n ≤⟨ j≥n ⟩
    toℕ j ≤⟨ toℕ-punchIn (F.cast (+-suc n m) (raise n i)) j ⟩
    toℕ (punchIn (F.cast _ (raise n i)) j) ≡˘⟨ toℕ-cast (sym (+-suc n m)) (punchIn (F.cast _ (raise n i)) j) ⟩
    toℕ (F.cast _ (punchIn (F.cast _ (raise n i)) j)) ∎
    where
    open ≤-Reasoning

  lookup-cast : ∀ {a A n} l j → lookup {a} {A} {n} l (F.cast refl j) ≡ lookup l j
  lookup-cast l zero = refl
  lookup-cast (x ∷ l) (suc j) = lookup-cast l j

  toℕ-reduce : ∀ {m n} i i≥m → toℕ (reduce≥ {m} {n} i i≥m) ≡ toℕ i ∸ m
  toℕ-reduce {zero} i i≥m = refl
  toℕ-reduce {suc m} (suc i) (s≤s i≥m) = toℕ-reduce i i≥m

  punchIn-∸ : ∀ {m n} i {j} j≥n → toℕ (punchIn (F.cast (+-suc n m) (raise n i)) j) ∸ n ≡ toℕ (punchIn i (reduce≥ j j≥n))
  punchIn-∸ {zero} {n} zero {j} j≥n = ⊥-elim (<⇒≱ (begin-strict
    toℕ j ≡˘⟨ toℕ-cast (+-identityʳ n) j ⟩
    toℕ (F.cast _ j) <⟨ toℕ<n (F.cast _ j) ⟩
    n ∎) j≥n)
    where
    open ≤-Reasoning
  punchIn-∸ {suc m} {zero} zero {j} z≤n = refl
  punchIn-∸ {suc m} {suc n} zero {suc j} (s≤s j≥n) = punchIn-∸ zero j≥n
  punchIn-∸ {suc m} {zero} (suc i) {zero} z≤n = refl
  punchIn-∸ {suc m} {zero} (suc i) {suc j} z≤n = cong suc (punchIn-∸ i z≤n)
  punchIn-∸ {suc m} {suc n} (suc i) {suc j} (s≤s j≥n) = punchIn-∸ (suc i) j≥n

  missing-link : ∀ {m n} i {j} j≥n → reduce≥ (F.cast (sym (+-suc n m)) (punchIn (F.cast (+-suc n m) (raise n i)) j)) (le i j≥n) ≡ punchIn i (reduce≥ j j≥n)
  missing-link {n = n} i {j} j≥n = toℕ-injective (begin
    toℕ (reduce≥ (F.cast _ (punchIn (F.cast _ (raise n i)) j)) (le i j≥n)) ≡⟨ toℕ-reduce (F.cast _ (punchIn (F.cast _ (raise n i)) j)) (le i j≥n) ⟩
    toℕ (F.cast _ (punchIn (F.cast _ (raise n i)) j)) ∸ n ≡⟨ cong (_∸ n) (toℕ-cast _ (punchIn (F.cast _ (raise n i)) j)) ⟩
    toℕ (punchIn (F.cast _ (raise n i)) j) ∸ n ≡⟨ punchIn-∸ i j≥n ⟩
    toℕ (punchIn i (reduce≥ j j≥n)) ∎)
    where
    open ≡-Reasoning

  eq : ∀ {a} {A : Set a} {m n} (Γ : Vec A m) τ′ i {j} j≥n → lookup (insert Γ i τ′) (reduce≥ (F.cast (sym (+-suc n m)) (punchIn (F.cast (+-suc n m) (raise n i)) j)) (le i {j} j≥n)) ≡ lookup Γ (reduce≥ j j≥n)
  eq {n = n} Γ τ′ i {j} j≥n = begin
    lookup (insert Γ i τ′) (reduce≥ (F.cast _ (punchIn (F.cast _ (raise n i)) j)) (le i j≥n)) ≡⟨ cong (lookup (insert Γ i τ′)) (missing-link i j≥n) ⟩
    lookup (insert Γ i τ′) (punchIn i (reduce≥ j j≥n)) ≡⟨ insert-punchIn Γ i τ′ (reduce≥ j j≥n) ⟩
    lookup Γ (reduce≥ j j≥n) ∎
    where
    open ≡-Reasoning

wkn₁ (Fix Γ,τ∷Δ⊢e∶τ) τ′ i = Fix (wkn₁ Γ,τ∷Δ⊢e∶τ τ′ i)
wkn₁{m} {n} {Γ} {Δ} (Cat {e₂ = e₂} {τ₂ = τ₂} Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) τ′ i =
  Cat (wkn₁ Γ,Δ⊢e₁∶τ₁  τ′ i)
      (subst (λ x → Δ ++ insert Γ i τ′ , [] ⊢ x ∶ τ₂)
             (begin
               cast _ (cast _ (wkn e₂ (F.cast refl (raise zero (F.cast _ (raise n i)))))) ≡⟨⟩
               cast _ (cast _ (wkn e₂ (F.cast refl (F.cast _ (raise n i))))) ≡⟨ cast-involutive (wkn e₂ (F.cast refl (F.cast _ (raise n i)))) refl (sym (+-suc n m)) (sym (+-suc n m)) ⟩
               cast _ (wkn e₂ (F.cast refl (F.cast _ (raise n i)))) ≡⟨ cong (λ x → cast (sym (+-suc n m)) (wkn e₂ x)) (fcast-involutive (raise n i) (+-suc n m) refl (+-suc n m)) ⟩
               cast _ (wkn e₂ (F.cast _ (raise n i))) ∎)
             (cast₁ (eq Γ Δ τ′ i) (wkn₁ Δ++Γ,∙⊢e₂∶τ₂ τ′ (F.cast (+-suc n m) (raise n i)))))
      τ₁⊛τ₂
  where
  open ≡-Reasoning
  eq : ∀ {a A m n} Γ Δ τ′ i → insert (Δ ++ Γ) (F.cast (+-suc n m) (raise n i)) τ′ ≅ Δ ++ insert {a} {A} {m} Γ i τ′
  eq Γ [] τ′ zero = ≅-refl
  eq (x ∷ Γ) [] τ′ (suc i) = refl ∷ eq Γ [] τ′ i
  eq Γ (x ∷ Δ) τ′ i = refl ∷ (eq Γ Δ τ′ i)

  fcast-involutive : ∀ {k m n} i → .(k≡m : k ≡ m) → .(m≡n : m ≡ n) → .(k≡n : k ≡ n) → F.cast m≡n (F.cast k≡m i) ≡ F.cast k≡n i
  fcast-involutive i k≡m m≡n k≡n = toℕ-injective (begin
    toℕ (F.cast m≡n (F.cast k≡m i)) ≡⟨ toℕ-cast m≡n (F.cast k≡m i) ⟩
    toℕ (F.cast k≡m i) ≡⟨ toℕ-cast k≡m i ⟩
    toℕ i ≡˘⟨ toℕ-cast k≡n i ⟩
    toℕ (F.cast k≡n i) ∎)

wkn₁ (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) τ′ i = Vee (wkn₁ Γ,Δ⊢e₁∶τ₁ τ′ i) (wkn₁ Γ,Δ⊢e₂∶τ₂ τ′ i) τ₁#τ₂

wkn₂ : ∀ {m n} {Γ : Vec (Type ℓ ℓ) m} {Δ : Vec (Type ℓ ℓ) n} {e τ} →
       Γ , Δ ⊢ e ∶ τ →
       ∀ τ′ i →
       Γ , insert Δ i τ′ ⊢ wkn e (inject+ m i) ∶ τ
wkn₂ Eps τ′ i = Eps
wkn₂ (Char c) τ′ i = Char c
wkn₂ Bot τ′ i = Bot
wkn₂ {m} {n} {Γ} {Δ} (Var {i = j} j≥n) τ′ i =
  subst (Γ , insert Δ i τ′ ⊢_∶ lookup Γ (reduce≥ j j≥n))
        (cong Var (toℕ-injective (begin-equality
          toℕ (suc j) ≡⟨⟩
          suc (toℕ j) ≡˘⟨ cong toℕ (punchIn-suc i≤j) ⟩
          toℕ (punchIn (inject+ m i) j) ∎)))
        (Var (s≤s j≥n))
  where
  open ≤-Reasoning

  m<n+1⇒m≤n : ∀ {m n} → m ℕ.< suc n → m ℕ.≤ n
  m<n+1⇒m≤n (s≤s m≤n) = m≤n

  i≤j : toℕ (inject+ m i) ℕ.≤ toℕ j
  i≤j = begin
    toℕ (inject+ m i) ≡˘⟨ toℕ-inject+ m i ⟩
    toℕ i ≤⟨ m<n+1⇒m≤n (toℕ<n i) ⟩
    n ≤⟨ j≥n ⟩
    toℕ j ∎

  punchIn-suc : ∀ {m i j} → toℕ i ℕ.≤ toℕ j → punchIn {m} i j ≡ suc j
  punchIn-suc {_} {zero} {j} i≤j = refl
  punchIn-suc {_} {suc i} {suc j} (s≤s i≤j) = cong suc (punchIn-suc i≤j)
wkn₂ (Fix Γ,τ∷Δ⊢e∶τ) τ′ i = Fix (wkn₂ Γ,τ∷Δ⊢e∶τ τ′ (suc i))
wkn₂ {m} {n} {Γ} {Δ} (Cat {e₂ = e₂} {τ₂ = τ₂} Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) τ′ i =
  Cat (wkn₂ Γ,Δ⊢e₁∶τ₁ τ′ i)
      (subst (insert Δ i τ′ ++ Γ , [] ⊢_∶ τ₂)
             (begin
               cast refl (cast refl (wkn e₂ (F.cast refl (inject+ m i)))) ≡⟨ cast-inverse (wkn e₂ (F.cast refl (inject+ m i))) refl refl ⟩
               wkn e₂ (F.cast refl (inject+ m i)) ≡⟨ cong (wkn e₂) (toℕ-injective (toℕ-cast refl (inject+ m i))) ⟩
               wkn e₂ (inject+ m i) ∎)
             (cast₁ (≅-reflexive (eq Γ Δ τ′ i)) (wkn₁ Δ++Γ,∙⊢e₂∶τ₂ τ′ (inject+ m i))))
      τ₁⊛τ₂
  where
  open ≡-Reasoning

  eq : ∀ {a A m n} Γ Δ τ i → insert (Δ ++ Γ) (inject+ m i) τ ≡ insert {a} {A} {n} Δ i τ ++ Γ
  eq Γ Δ τ zero = refl
  eq Γ (_ ∷ Δ) τ (suc i) = cong₂ _∷_ refl (eq Γ Δ τ i)
wkn₂ (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) τ′ i = Vee (wkn₂ Γ,Δ⊢e₁∶τ₁ τ′ i) (wkn₂ Γ,Δ⊢e₂∶τ₂ τ′ i) τ₁#τ₂