blob: e1f7cc7710995d4c6d57dfeba2f8e1910b7f3339 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary as B using (Setoid)
module Cfe.Language.Base
{c ℓ} (over : Setoid c ℓ)
where
open Setoid over using () renaming (Carrier to C)
open import Algebra
open import Data.Empty
open import Data.List hiding (null)
open import Data.Product
open import Data.Unit using (⊤; tt)
open import Function hiding (Injection; Surjection; Inverse)
import Function.Equality as Equality using (setoid)
open import Level as L hiding (Lift)
open import Relation.Binary.Indexed.Heterogeneous.Construct.Trivial as Trivial
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
open import Relation.Binary.Indexed.Heterogeneous
infix 4 _∈_
Language : ∀ a aℓ → Set (suc c ⊔ suc a ⊔ suc aℓ)
Language a aℓ = IndexedSetoid (List C) a aℓ
∅ : Language 0ℓ 0ℓ
∅ = Trivial.indexedSetoid (≡.setoid ⊥)
{ε} : Language c 0ℓ
{ε} = record
{ Carrier = [] ≡_
; _≈_ = λ _ _ → ⊤
; isEquivalence = record
{ refl = tt
; sym = λ _ → tt
; trans = λ _ _ → tt
}
}
Lift : ∀ {a aℓ} → (b bℓ : Level) → Language a aℓ → Language (a ⊔ b) (aℓ ⊔ bℓ)
Lift b bℓ A = record
{ Carrier = L.Lift b ∘ A.Carrier
; _≈_ = λ (lift x) (lift y) → L.Lift bℓ (x A.≈ y)
; isEquivalence = record
{ refl = lift A.refl
; sym = λ (lift x) → lift (A.sym x)
; trans = λ (lift x) (lift y) → lift (A.trans x y)
}
}
where
module A = IndexedSetoid A
𝕃 : ∀ {a aℓ} → Language a aℓ → List C → Set a
𝕃 = IndexedSetoid.Carrier
_∈_ : ∀ {a aℓ} → List C → Language a aℓ → Set a
_∈_ = flip 𝕃
∈-cong : ∀ {a aℓ} → (A : Language a aℓ) → ∀ {l₁ l₂} → l₁ ≡ l₂ → l₁ ∈ A → l₂ ∈ A
∈-cong A ≡.refl l∈A = l∈A
≈ᴸ : ∀ {a aℓ} → (A : Language a aℓ) → ∀ {l₁ l₂} → 𝕃 A l₁ → 𝕃 A l₂ → Set aℓ
≈ᴸ = IndexedSetoid._≈_
≈ᴸ-refl : ∀ {a aℓ} → (A : Language a aℓ) → Reflexive (𝕃 A) (≈ᴸ A)
≈ᴸ-refl = IsIndexedEquivalence.refl ∘ IndexedSetoid.isEquivalence
≈ᴸ-sym : ∀ {a aℓ} → (A : Language a aℓ) → Symmetric (𝕃 A) (≈ᴸ A)
≈ᴸ-sym = IsIndexedEquivalence.sym ∘ IndexedSetoid.isEquivalence
≈ᴸ-trans : ∀ {a aℓ} → (A : Language a aℓ) → Transitive (𝕃 A) (≈ᴸ A)
≈ᴸ-trans = IsIndexedEquivalence.trans ∘ IndexedSetoid.isEquivalence
≈ᴸ-cong : ∀ {a aℓ} → (A : Language a aℓ) → ∀ {l₁ l₂ l₃ l₄} →
(l₁≡l₂ : l₁ ≡ l₂) → (l₃≡l₄ : l₃ ≡ l₄) →
(l₁∈A : l₁ ∈ A) → (l₃∈A : l₃ ∈ A) →
≈ᴸ A l₁∈A l₃∈A →
≈ᴸ A (∈-cong A l₁≡l₂ l₁∈A) (∈-cong A l₃≡l₄ l₃∈A)
≈ᴸ-cong A ≡.refl ≡.refl l₁∈A l₃∈A eq = eq
record _≤_ {a aℓ b bℓ} (A : Language a aℓ) (B : Language b bℓ) : Set (c ⊔ a ⊔ aℓ ⊔ b ⊔ bℓ) where
field
f : ∀ {l} → l ∈ A → l ∈ B
cong : ∀ {l₁ l₂ l₁∈A l₂∈A} → ≈ᴸ A {l₁} {l₂} l₁∈A l₂∈A → ≈ᴸ B (f l₁∈A) (f l₂∈A)
record _≈_ {a aℓ b bℓ} (A : Language a aℓ) (B : Language b bℓ) : Set (c ⊔ ℓ ⊔ a ⊔ aℓ ⊔ b ⊔ bℓ) where
field
f : ∀ {l} → l ∈ A → l ∈ B
f⁻¹ : ∀ {l} → l ∈ B → l ∈ A
cong₁ : ∀ {l₁ l₂ l₁∈A l₂∈A} → ≈ᴸ A {l₁} {l₂} l₁∈A l₂∈A → ≈ᴸ B (f l₁∈A) (f l₂∈A)
cong₂ : ∀ {l₁ l₂ l₁∈B l₂∈B} → ≈ᴸ B {l₁} {l₂} l₁∈B l₂∈B → ≈ᴸ A (f⁻¹ l₁∈B) (f⁻¹ l₂∈B)
≈-refl : ∀ {a aℓ} → B.Reflexive (_≈_ {a} {aℓ})
≈-refl {x = A} = record
{ f = id
; f⁻¹ = id
; cong₁ = id
; cong₂ = id
}
≈-sym : ∀ {a aℓ b bℓ} → B.Sym (_≈_ {a} {aℓ} {b} {bℓ}) _≈_
≈-sym A≈B = record
{ f = A≈B.f⁻¹
; f⁻¹ = A≈B.f
; cong₁ = A≈B.cong₂
; cong₂ = A≈B.cong₁
}
where
module A≈B = _≈_ A≈B
≈-trans : ∀ {a aℓ b bℓ c cℓ} → B.Trans (_≈_ {a} {aℓ}) (_≈_ {b} {bℓ} {c} {cℓ}) _≈_
≈-trans {i = A} {B} {C} A≈B B≈C = record
{ f = B≈C.f ∘ A≈B.f
; f⁻¹ = A≈B.f⁻¹ ∘ B≈C.f⁻¹
; cong₁ = B≈C.cong₁ ∘ A≈B.cong₁
; cong₂ = A≈B.cong₂ ∘ B≈C.cong₂
}
where
module A≈B = _≈_ A≈B
module B≈C = _≈_ B≈C
≈-isEquivalence : ∀ {a aℓ} → B.IsEquivalence (_≈_ {a} {aℓ} {a} {aℓ})
≈-isEquivalence = record
{ refl = ≈-refl
; sym = ≈-sym
; trans = ≈-trans
}
setoid : ∀ a aℓ → B.Setoid (suc (c ⊔ a ⊔ aℓ)) (c ⊔ ℓ ⊔ a ⊔ aℓ)
setoid a aℓ = record { isEquivalence = ≈-isEquivalence {a} {aℓ} }
≤-refl : ∀ {a aℓ} → B.Reflexive (_≤_ {a} {aℓ})
≤-refl = record
{ f = id
; cong = id
}
≤-reflexive : ∀ {a aℓ b bℓ} → _≈_ {a} {aℓ} {b} {bℓ} B.⇒ _≤_
≤-reflexive A≈B = record
{ f = A≈B.f
; cong = A≈B.cong₁
}
where
module A≈B = _≈_ A≈B
≤-trans : ∀ {a aℓ b bℓ c cℓ} → B.Trans (_≤_ {a} {aℓ}) (_≤_ {b} {bℓ} {c} {cℓ}) _≤_
≤-trans A≤B B≤C = record
{ f = B≤C.f ∘ A≤B.f
; cong = B≤C.cong ∘ A≤B.cong
}
where
module A≤B = _≤_ A≤B
module B≤C = _≤_ B≤C
≤-antisym : ∀ {a aℓ b bℓ} → B.Antisym (_≤_ {a} {aℓ} {b} {bℓ}) _≤_ _≈_
≤-antisym A≤B B≤A = record
{ f = A≤B.f
; f⁻¹ = B≤A.f
; cong₁ = A≤B.cong
; cong₂ = B≤A.cong
}
where
module A≤B = _≤_ A≤B
module B≤A = _≤_ B≤A
≤-min : ∀ {b bℓ} → B.Min (_≤_ {b = b} {bℓ}) ∅
≤-min A = record
{ f = λ ()
; cong = λ {_} {_} {}
}
≤-isPartialOrder : ∀ a aℓ → B.IsPartialOrder (_≈_ {a} {aℓ}) _≤_
≤-isPartialOrder a aℓ = record
{ isPreorder = record
{ isEquivalence = ≈-isEquivalence
; reflexive = ≤-reflexive
; trans = ≤-trans
}
; antisym = ≤-antisym
}
poset : ∀ a aℓ → B.Poset (suc (c ⊔ a ⊔ aℓ)) (c ⊔ ℓ ⊔ a ⊔ aℓ) (c ⊔ a ⊔ aℓ)
poset a aℓ = record { isPartialOrder = ≤-isPartialOrder a aℓ }
null : ∀ {a} {aℓ} → Language a aℓ → Set a
null A = [] ∈ A
first : ∀ {a} {aℓ} → Language a aℓ → C → Set (c ⊔ a)
first A x = ∃[ l ] x ∷ l ∈ A
flast : ∀ {a} {aℓ} → Language a aℓ → C → Set (c ⊔ a)
flast A x = ∃[ l ] (l ≡.≢ [] × ∃[ l′ ] l ++ x ∷ l′ ∈ A)
|