blob: daa1628119911db57ebda5584ebac908c38bec42 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
|
{-# OPTIONS --without-K --safe #-}
open import Function
open import Relation.Binary
import Relation.Binary.PropositionalEquality as ≡
module Cfe.Language.Construct.Single
{c ℓ} (over : Setoid c ℓ)
(≈-trans-bijₗ : ∀ {a b c b≈c}
→ Bijective ≡._≡_ ≡._≡_ (flip (Setoid.trans over {a} {b} {c}) b≈c))
(≈-trans-reflₗ : ∀ {a b a≈b}
→ Setoid.trans over {a} a≈b (Setoid.refl over {b}) ≡.≡ a≈b)
(≈-trans-symₗ : ∀ {a b c a≈b a≈c b≈c}
→ Setoid.trans over {a} {b} {c} a≈b b≈c ≡.≡ a≈c
→ Setoid.trans over a≈c (Setoid.sym over b≈c) ≡.≡ a≈b)
(≈-trans-transₗ : ∀ {a b c d a≈b a≈c a≈d b≈c c≈d}
→ Setoid.trans over {a} {b} a≈b b≈c ≡.≡ a≈c
→ Setoid.trans over {a} {c} {d} a≈c c≈d ≡.≡ a≈d
→ Setoid.trans over a≈b (Setoid.trans over b≈c c≈d) ≡.≡ a≈d)
where
open Setoid over renaming (Carrier to C)
open import Cfe.Language over hiding (_≈_)
open import Data.List
open import Data.List.Relation.Binary.Equality.Setoid over
open import Data.Product as Product
open import Level
private
∷-inj : {a b : C} {l₁ l₂ : List C} {a≈b a≈b′ : a ≈ b} {l₁≋l₂ l₁≋l₂′ : l₁ ≋ l₂} → ≡._≡_ {A = a ∷ l₁ ≋ b ∷ l₂} (a≈b ∷ l₁≋l₂) (a≈b′ ∷ l₁≋l₂′) → (a≈b ≡.≡ a≈b′) × (l₁≋l₂ ≡.≡ l₁≋l₂′)
∷-inj ≡.refl = ≡.refl , ≡.refl
≋-trans-injₗ : {x l₁ l₂ : List C} → {l₁≋l₂ : l₁ ≋ l₂} → Injective ≡._≡_ ≡._≡_ (flip (≋-trans {x}) l₁≋l₂)
≋-trans-injₗ {_} {_} {_} {_} {[]} {[]} _ = ≡.refl
≋-trans-injₗ {_} {_} {_} {_ ∷ _} {_ ∷ _} {_ ∷ _} = uncurry (≡.cong₂ _∷_)
∘ Product.map (proj₁ ≈-trans-bijₗ) ≋-trans-injₗ
∘ ∷-inj
≋-trans-surₗ : {x l₁ l₂ : List C} → {l₁≋l₂ : l₁ ≋ l₂} → Surjective {A = x ≋ l₁} ≡._≡_ ≡._≡_ (flip (≋-trans {x}) l₁≋l₂)
≋-trans-surₗ {_} {_} {_} {[]} [] = [] , ≡.refl
≋-trans-surₗ {_} {_} {_} {_ ∷ _} (a≈c ∷ x≋l₂) = Product.zip _∷_ (≡.cong₂ _∷_) (proj₂ ≈-trans-bijₗ a≈c) (≋-trans-surₗ x≋l₂)
≋-trans-reflₗ : {l₁ l₂ : List C} {l₁≋l₂ : l₁ ≋ l₂} → ≋-trans l₁≋l₂ ≋-refl ≡.≡ l₁≋l₂
≋-trans-reflₗ {_} {_} {[]} = ≡.refl
≋-trans-reflₗ {_} {_} {a≈b ∷ l₁≋l₂} = ≡.cong₂ _∷_ ≈-trans-reflₗ ≋-trans-reflₗ
≋-trans-symₗ : {l₁ l₂ l₃ : List C} {l₁≋l₂ : l₁ ≋ l₂} {l₁≋l₃ : l₁ ≋ l₃} {l₂≋l₃ : l₂ ≋ l₃}
→ ≋-trans l₁≋l₂ l₂≋l₃ ≡.≡ l₁≋l₃
→ ≋-trans l₁≋l₃ (≋-sym l₂≋l₃) ≡.≡ l₁≋l₂
≋-trans-symₗ {_} {_} {_} {[]} {[]} {[]} _ = ≡.refl
≋-trans-symₗ {_} {_} {_} {_ ∷ _} {_ ∷ _} {_ ∷ _} = uncurry (≡.cong₂ _∷_)
∘ Product.map ≈-trans-symₗ ≋-trans-symₗ
∘ ∷-inj
≋-trans-transₗ : {l₁ l₂ l₃ l₄ : List C}
→ {l₁≋l₂ : l₁ ≋ l₂} {l₁≋l₃ : l₁ ≋ l₃} {l₁≋l₄ : l₁ ≋ l₄} {l₂≋l₃ : l₂ ≋ l₃} {l₃≋l₄ : l₃ ≋ l₄}
→ ≋-trans l₁≋l₂ l₂≋l₃ ≡.≡ l₁≋l₃
→ ≋-trans l₁≋l₃ l₃≋l₄ ≡.≡ l₁≋l₄
→ ≋-trans l₁≋l₂ (≋-trans l₂≋l₃ l₃≋l₄) ≡.≡ l₁≋l₄
≋-trans-transₗ {l₁≋l₂ = []} {[]} {[]} {[]} {[]} _ _ = ≡.refl
≋-trans-transₗ {l₁≋l₂ = _ ∷ _} {_ ∷ _} {_ ∷ _} {_ ∷ _} {_ ∷ _} = uncurry (≡.cong₂ _∷_)
∘₂ uncurry (Product.zip ≈-trans-transₗ ≋-trans-transₗ)
∘₂ curry (Product.map ∷-inj ∷-inj)
{_} : C → Language (c ⊔ ℓ) (c ⊔ ℓ)
{ c } = record
{ Carrier = [ c ] ≋_
; _≈_ = λ l≋m l≋n → ∃[ m≋n ] ≋-trans l≋m m≋n ≡.≡ l≋n
; isEquivalence = record
{ refl = ≋-refl , ≋-trans-reflₗ
; sym = Product.map ≋-sym ≋-trans-symₗ
; trans = Product.zip ≋-trans ≋-trans-transₗ
}
}
|