summaryrefslogtreecommitdiff
path: root/src/Level0.idr
diff options
context:
space:
mode:
Diffstat (limited to 'src/Level0.idr')
-rw-r--r--src/Level0.idr111
1 files changed, 76 insertions, 35 deletions
diff --git a/src/Level0.idr b/src/Level0.idr
index 3c71111..bbe141f 100644
--- a/src/Level0.idr
+++ b/src/Level0.idr
@@ -19,64 +19,105 @@ Applicative Cont where
Monad Cont where
join (Then f) = Then (\k => f (\c => runCont c k))
-public export
-data NormSubst : SnocList Ty -> SnocList Ty -> Type where
- Base : ctx' `Thins` ctx -> NormSubst ctx ctx'
- (:<) : NormSubst ctx ctx' -> Normal ctx ty -> NormSubst ctx (ctx' :< ty)
+data IsNormSubst : Subst ctx ctx' -> Type where
+ Base : IsNormSubst (Base thin)
+ (:<) : IsNormSubst sub -> IsNormal t -> IsNormSubst (sub :< t)
-%name NormSubst sub
+%name IsNormSubst prf
+
+record NormSubst (ctx, ctx' : SnocList Ty) where
+ constructor MkNormSubst
+ forget : Subst ctx ctx'
+ 0 isNormSubst : IsNormSubst forget
-shift : NormSubst ctx ctx' -> NormSubst (ctx :< ty) ctx'
-shift (Base thin) = Base (Drop thin)
-shift (sub :< t) = shift sub :< wknNorm t (Drop Id)
+%name NormSubst sub
-lift : NormSubst ctx ctx' -> NormSubst (ctx :< ty) (ctx' :< ty)
-lift (Base thin) = Base (keep thin)
-lift (sub :< t) = shift (sub :< t) :< Ntrl (Var Here)
+indexNormal : IsNormSubst sub -> (i : Elem ty ctx) -> IsNormal (index sub i)
+indexNormal Base i = Ntrl Var
+indexNormal (sub :< t) Here = t
+indexNormal (sub :< t) (There i) = indexNormal sub i
index : NormSubst ctx' ctx -> Elem ty ctx -> Normal ctx' ty
-index (Base thin) i = Ntrl (Var $ index thin i)
-index (sub :< t) Here = t
-index (sub :< t) (There i) = index sub i
+index sub i = MkNormal (index (forget sub) i) (indexNormal (isNormSubst sub) i)
+
+restrictNormal : IsNormSubst sub -> (thin : ctx3 `Thins` ctx2) -> IsNormSubst (restrict sub thin)
+restrictNormal Base thin = Base
+restrictNormal (sub :< t) Id = sub :< t
+restrictNormal (sub :< t) (Drop thin) = restrictNormal sub thin
+restrictNormal (sub :< t) (Keep thin) = restrictNormal sub thin :< t
restrict : NormSubst ctx1 ctx2 -> ctx3 `Thins` ctx2 -> NormSubst ctx1 ctx3
-restrict (Base thin') thin = Base (thin' . thin)
-restrict (sub :< t) Id = sub :< t
-restrict (sub :< t) (Drop thin) = restrict sub thin
-restrict (sub :< t) (Keep thin) = restrict sub thin :< t
+restrict sub thin =
+ MkNormSubst
+ (restrict (forget sub) thin)
+ (restrictNormal (isNormSubst sub) thin)
data Case : Type -> Type where
- Eval : Term ctx ty -> NormSubst ctx' ctx -> Case (Normal ctx' ty)
- EvalSub : Subst ctx' ctx -> NormSubst ctx'' ctx' -> Case (NormSubst ctx'' ctx)
- App : Normal ctx (ty ~> ty') -> Normal ctx ty -> Case (Normal ctx ty')
- Rec : Normal ctx N -> Normal ctx ty -> Normal (ctx :< ty) ty -> Case (Normal ctx ty)
+ Eval :
+ Term ctx ty ->
+ NormSubst ctx' ctx ->
+ Case (Normal ctx' ty)
+ EvalSub :
+ Subst ctx' ctx ->
+ NormSubst ctx'' ctx' ->
+ Case (NormSubst ctx'' ctx)
+ App :
+ Normal ctx (ty ~> ty') ->
+ Normal ctx ty ->
+ Case (Normal ctx ty')
+ Rec :
+ Normal ctx N ->
+ Normal ctx ty ->
+ Normal (ctx :< ty) ty ->
+ Case (Normal ctx ty)
partial
eval : Case ret -> Cont (ret)
eval (Eval (Var i) sub) = pure (index sub i)
-eval (Eval (Abs t) sub) = [| Abs (eval (Eval t (lift sub))) |]
+eval (Eval (Abs t) sub) = do
+ sub <- eval (EvalSub (forget sub) (MkNormSubst (Base $ Drop Id) Base))
+ let sub = MkNormSubst (forget sub :< Var Here) (isNormSubst sub :< Ntrl Var)
+ t <- eval (Eval t sub)
+ pure (MkNormal (Abs $ forget t) (Abs $ isNormal t))
eval (Eval (App t u) sub) = do
t <- eval (Eval t sub)
u <- eval (Eval u sub)
eval (App t u)
-eval (Eval (Zero) sub) = pure Zero
-eval (Eval (Succ t) sub) = [| Succ (eval (Eval t sub)) |]
+eval (Eval (Zero) sub) = pure (MkNormal Zero Zero)
+eval (Eval (Succ t) sub) = {forget $= Succ, isNormal $= Succ} <$> eval (Eval t sub)
eval (Eval (Rec t u v) sub) = do
t <- eval (Eval t sub)
u <- eval (Eval u sub)
- v <- eval (Eval v (lift sub))
+ sub <- eval (EvalSub (forget sub) (MkNormSubst (Base $ Drop Id) Base))
+ let sub = MkNormSubst (forget sub :< Var Here) (isNormSubst sub :< Ntrl Var)
+ v <- eval (Eval v sub)
eval (Rec t u v)
eval (Eval (Sub t sub') sub) = do
sub' <- eval (EvalSub sub' sub)
eval (Eval t sub')
eval (EvalSub (Base thin) sub') = pure (restrict sub' thin)
eval (EvalSub (sub :< t) sub') =
- [| eval (EvalSub sub sub') :< eval (Eval t sub') |]
-eval (App (Abs t) u) =
- eval (Eval (forgetNorm t) (Base Id :< u))
-eval (App (Ntrl t) u) = pure (Ntrl $ App t u)
-eval (Rec (Zero) u v) = pure u
-eval (Rec (Succ t) u v) = do
- val <- eval (Rec t u v)
- eval (Eval (forgetNorm v) (Base Id :< val))
-eval (Rec (Ntrl t) u v) = pure (Ntrl $ Rec t u v)
+ pure (\sub, t => MkNormSubst (forget sub :< forget t) (isNormSubst sub :< isNormal t)) <*>
+ eval (EvalSub sub sub') <*>
+ eval (Eval t sub')
+eval (App (MkNormal (Abs t) prf) u) =
+ eval (Eval t (MkNormSubst (Base Id :< forget u) (Base :< isNormal u)))
+eval (App (MkNormal t@(Var _) prf) u) =
+ pure (MkNormal (App t (forget u)) (Ntrl $ App Var (isNormal u)))
+eval (App (MkNormal t@(App _ _) prf) u) =
+ pure (MkNormal (App t (forget u)) (Ntrl $ App (appNtrl prf) (isNormal u)))
+eval (App (MkNormal t@(Rec _ _ _) prf) u) =
+ pure (MkNormal (App t (forget u)) (Ntrl $ App (recNtrl prf) (isNormal u)))
+eval (Rec (MkNormal Zero prf) u v) = pure u
+eval (Rec (MkNormal (Succ t) prf) u v) = do
+ val <- eval (Rec (MkNormal t (predNorm prf)) u v)
+ eval (Eval (forget v) (MkNormSubst (Base Id :< forget val) (Base :< isNormal val)))
+eval (Rec (MkNormal t@(Var _) prf) u v) =
+ pure $
+ MkNormal (Rec t (forget u) (forget v)) (Ntrl $ Rec Var (isNormal u) (isNormal v))
+eval (Rec (MkNormal t@(App _ _) prf) u v) =
+ pure $
+ MkNormal (Rec t (forget u) (forget v)) (Ntrl $ Rec (appNtrl prf) (isNormal u) (isNormal v))
+eval (Rec (MkNormal t@(Rec _ _ _) prf) u v) =
+ pure $
+ MkNormal (Rec t (forget u) (forget v)) (Ntrl $ Rec (recNtrl prf) (isNormal u) (isNormal v))