diff options
Diffstat (limited to 'src/Level0.idr')
-rw-r--r-- | src/Level0.idr | 111 |
1 files changed, 76 insertions, 35 deletions
diff --git a/src/Level0.idr b/src/Level0.idr index 3c71111..bbe141f 100644 --- a/src/Level0.idr +++ b/src/Level0.idr @@ -19,64 +19,105 @@ Applicative Cont where Monad Cont where join (Then f) = Then (\k => f (\c => runCont c k)) -public export -data NormSubst : SnocList Ty -> SnocList Ty -> Type where - Base : ctx' `Thins` ctx -> NormSubst ctx ctx' - (:<) : NormSubst ctx ctx' -> Normal ctx ty -> NormSubst ctx (ctx' :< ty) +data IsNormSubst : Subst ctx ctx' -> Type where + Base : IsNormSubst (Base thin) + (:<) : IsNormSubst sub -> IsNormal t -> IsNormSubst (sub :< t) -%name NormSubst sub +%name IsNormSubst prf + +record NormSubst (ctx, ctx' : SnocList Ty) where + constructor MkNormSubst + forget : Subst ctx ctx' + 0 isNormSubst : IsNormSubst forget -shift : NormSubst ctx ctx' -> NormSubst (ctx :< ty) ctx' -shift (Base thin) = Base (Drop thin) -shift (sub :< t) = shift sub :< wknNorm t (Drop Id) +%name NormSubst sub -lift : NormSubst ctx ctx' -> NormSubst (ctx :< ty) (ctx' :< ty) -lift (Base thin) = Base (keep thin) -lift (sub :< t) = shift (sub :< t) :< Ntrl (Var Here) +indexNormal : IsNormSubst sub -> (i : Elem ty ctx) -> IsNormal (index sub i) +indexNormal Base i = Ntrl Var +indexNormal (sub :< t) Here = t +indexNormal (sub :< t) (There i) = indexNormal sub i index : NormSubst ctx' ctx -> Elem ty ctx -> Normal ctx' ty -index (Base thin) i = Ntrl (Var $ index thin i) -index (sub :< t) Here = t -index (sub :< t) (There i) = index sub i +index sub i = MkNormal (index (forget sub) i) (indexNormal (isNormSubst sub) i) + +restrictNormal : IsNormSubst sub -> (thin : ctx3 `Thins` ctx2) -> IsNormSubst (restrict sub thin) +restrictNormal Base thin = Base +restrictNormal (sub :< t) Id = sub :< t +restrictNormal (sub :< t) (Drop thin) = restrictNormal sub thin +restrictNormal (sub :< t) (Keep thin) = restrictNormal sub thin :< t restrict : NormSubst ctx1 ctx2 -> ctx3 `Thins` ctx2 -> NormSubst ctx1 ctx3 -restrict (Base thin') thin = Base (thin' . thin) -restrict (sub :< t) Id = sub :< t -restrict (sub :< t) (Drop thin) = restrict sub thin -restrict (sub :< t) (Keep thin) = restrict sub thin :< t +restrict sub thin = + MkNormSubst + (restrict (forget sub) thin) + (restrictNormal (isNormSubst sub) thin) data Case : Type -> Type where - Eval : Term ctx ty -> NormSubst ctx' ctx -> Case (Normal ctx' ty) - EvalSub : Subst ctx' ctx -> NormSubst ctx'' ctx' -> Case (NormSubst ctx'' ctx) - App : Normal ctx (ty ~> ty') -> Normal ctx ty -> Case (Normal ctx ty') - Rec : Normal ctx N -> Normal ctx ty -> Normal (ctx :< ty) ty -> Case (Normal ctx ty) + Eval : + Term ctx ty -> + NormSubst ctx' ctx -> + Case (Normal ctx' ty) + EvalSub : + Subst ctx' ctx -> + NormSubst ctx'' ctx' -> + Case (NormSubst ctx'' ctx) + App : + Normal ctx (ty ~> ty') -> + Normal ctx ty -> + Case (Normal ctx ty') + Rec : + Normal ctx N -> + Normal ctx ty -> + Normal (ctx :< ty) ty -> + Case (Normal ctx ty) partial eval : Case ret -> Cont (ret) eval (Eval (Var i) sub) = pure (index sub i) -eval (Eval (Abs t) sub) = [| Abs (eval (Eval t (lift sub))) |] +eval (Eval (Abs t) sub) = do + sub <- eval (EvalSub (forget sub) (MkNormSubst (Base $ Drop Id) Base)) + let sub = MkNormSubst (forget sub :< Var Here) (isNormSubst sub :< Ntrl Var) + t <- eval (Eval t sub) + pure (MkNormal (Abs $ forget t) (Abs $ isNormal t)) eval (Eval (App t u) sub) = do t <- eval (Eval t sub) u <- eval (Eval u sub) eval (App t u) -eval (Eval (Zero) sub) = pure Zero -eval (Eval (Succ t) sub) = [| Succ (eval (Eval t sub)) |] +eval (Eval (Zero) sub) = pure (MkNormal Zero Zero) +eval (Eval (Succ t) sub) = {forget $= Succ, isNormal $= Succ} <$> eval (Eval t sub) eval (Eval (Rec t u v) sub) = do t <- eval (Eval t sub) u <- eval (Eval u sub) - v <- eval (Eval v (lift sub)) + sub <- eval (EvalSub (forget sub) (MkNormSubst (Base $ Drop Id) Base)) + let sub = MkNormSubst (forget sub :< Var Here) (isNormSubst sub :< Ntrl Var) + v <- eval (Eval v sub) eval (Rec t u v) eval (Eval (Sub t sub') sub) = do sub' <- eval (EvalSub sub' sub) eval (Eval t sub') eval (EvalSub (Base thin) sub') = pure (restrict sub' thin) eval (EvalSub (sub :< t) sub') = - [| eval (EvalSub sub sub') :< eval (Eval t sub') |] -eval (App (Abs t) u) = - eval (Eval (forgetNorm t) (Base Id :< u)) -eval (App (Ntrl t) u) = pure (Ntrl $ App t u) -eval (Rec (Zero) u v) = pure u -eval (Rec (Succ t) u v) = do - val <- eval (Rec t u v) - eval (Eval (forgetNorm v) (Base Id :< val)) -eval (Rec (Ntrl t) u v) = pure (Ntrl $ Rec t u v) + pure (\sub, t => MkNormSubst (forget sub :< forget t) (isNormSubst sub :< isNormal t)) <*> + eval (EvalSub sub sub') <*> + eval (Eval t sub') +eval (App (MkNormal (Abs t) prf) u) = + eval (Eval t (MkNormSubst (Base Id :< forget u) (Base :< isNormal u))) +eval (App (MkNormal t@(Var _) prf) u) = + pure (MkNormal (App t (forget u)) (Ntrl $ App Var (isNormal u))) +eval (App (MkNormal t@(App _ _) prf) u) = + pure (MkNormal (App t (forget u)) (Ntrl $ App (appNtrl prf) (isNormal u))) +eval (App (MkNormal t@(Rec _ _ _) prf) u) = + pure (MkNormal (App t (forget u)) (Ntrl $ App (recNtrl prf) (isNormal u))) +eval (Rec (MkNormal Zero prf) u v) = pure u +eval (Rec (MkNormal (Succ t) prf) u v) = do + val <- eval (Rec (MkNormal t (predNorm prf)) u v) + eval (Eval (forget v) (MkNormSubst (Base Id :< forget val) (Base :< isNormal val))) +eval (Rec (MkNormal t@(Var _) prf) u v) = + pure $ + MkNormal (Rec t (forget u) (forget v)) (Ntrl $ Rec Var (isNormal u) (isNormal v)) +eval (Rec (MkNormal t@(App _ _) prf) u v) = + pure $ + MkNormal (Rec t (forget u) (forget v)) (Ntrl $ Rec (appNtrl prf) (isNormal u) (isNormal v)) +eval (Rec (MkNormal t@(Rec _ _ _) prf) u v) = + pure $ + MkNormal (Rec t (forget u) (forget v)) (Ntrl $ Rec (recNtrl prf) (isNormal u) (isNormal v)) |