summaryrefslogtreecommitdiff
path: root/src/Term.idr
diff options
context:
space:
mode:
Diffstat (limited to 'src/Term.idr')
-rw-r--r--src/Term.idr83
1 files changed, 83 insertions, 0 deletions
diff --git a/src/Term.idr b/src/Term.idr
new file mode 100644
index 0000000..a21f50a
--- /dev/null
+++ b/src/Term.idr
@@ -0,0 +1,83 @@
+module Term
+
+import Data.SnocList
+import Data.SnocList.Elem
+import Data.SnocList.Quantifiers
+import Thinning
+
+infixr 20 ~>
+
+-- Types -----------------------------------------------------------------------
+
+data Ty : Type where
+ N : Ty
+ (~>) : Ty -> Ty -> Ty
+
+%name Ty ty
+
+-- Terms -----------------------------------------------------------------------
+
+data Term : SnocList Ty -> Ty -> Type
+data Subst : SnocList Ty -> SnocList Ty -> Type
+
+data Term where
+ Var : (i : Elem ty ctx) -> Term ctx ty
+ Abs : Term (ctx :< ty) ty' -> Term ctx (ty ~> ty')
+ App : Term ctx (ty ~> ty') -> Term ctx ty -> Term ctx ty'
+ Zero : Term ctx N
+ Succ : Term ctx N -> Term ctx N
+ Rec : Term ctx N -> Term ctx ty -> Term (ctx :< ty) ty -> Term ctx ty
+ Sub : Term ctx ty -> Subst ctx' ctx -> Term ctx' ty
+
+data Subst where
+ Base : ctx' `Thins` ctx -> Subst ctx ctx'
+ (:<) : Subst ctx ctx' -> Term ctx ty -> Subst ctx (ctx' :< ty)
+
+%name Term t, u, v
+%name Subst sub
+
+shift : Subst ctx ctx' -> Subst (ctx :< ty) ctx'
+shift (Base thin) = Base (Drop thin)
+shift (sub :< t) = shift sub :< Sub t (Base (Drop Id))
+
+lift : Subst ctx ctx' -> Subst (ctx :< ty) (ctx' :< ty)
+lift (Base thin) = Base (keep thin)
+lift (sub :< t) = shift (sub :< t) :< Var Here
+
+indexSubst : Subst ctx' ctx -> Elem ty ctx -> Term ctx' ty
+indexSubst (Base thin) i = Var (index thin i)
+indexSubst (sub :< t) Here = t
+indexSubst (sub :< t) (There i) = indexSubst sub i
+
+restrict : Subst ctx1 ctx2 -> ctx3 `Thins` ctx2 -> Subst ctx1 ctx3
+restrict (Base thin') thin = Base (thin' . thin)
+restrict (sub :< t) Id = sub :< t
+restrict (sub :< t) (Drop thin) = restrict sub thin
+restrict (sub :< t) (Keep thin) = restrict sub thin :< t
+
+(.) : Subst ctx1 ctx2 -> Subst ctx2 ctx3 -> Subst ctx1 ctx3
+sub2 . Base thin = restrict sub2 thin
+sub2 . (sub1 :< t) = sub2 . sub1 :< Sub t sub2
+
+-- Equivalence -----------------------------------------------------------------
+
+data Equiv : Term ctx ty -> Term ctx ty -> Type
+
+data Equiv where
+ Refl : Equiv t t
+ Sym : Equiv t u -> Equiv u t
+ Trans : Equiv t u -> Equiv u v -> Equiv t v
+ AbsCong : Equiv t u -> Equiv (Abs t) (Abs u)
+ AppCong : Equiv t1 t2 -> Equiv u1 u2 -> Equiv (App t1 u1) (App t2 u2)
+ SuccCong : Equiv t u -> Equiv (Succ t) (Succ u)
+ RecCong : Equiv t1 t2 -> Equiv u1 u2 -> Equiv v1 v2 -> Equiv (Rec t1 u1 v1) (Rec t2 u2 v2)
+ PiBeta : Equiv (App (Abs t) u) (Sub t (Base Id :< u))
+ NatBetaZ : Equiv (Rec Zero t u) t
+ NatBetaS : Equiv (Rec (Succ t) u v) (Sub v (Base Id :< Rec t u v))
+ SubVar : Equiv (Sub (Var i) sub) (indexSubst sub i)
+ SubAbs : Equiv (Sub (Abs t) sub) (Abs (Sub t $ lift sub))
+ SubApp : Equiv (Sub (App t u) sub) (App (Sub t sub) (Sub u sub))
+ SubZero : Equiv (Sub Zero sub) Zero
+ SubSucc : Equiv (Sub (Succ t) sub) (Succ (Sub t sub))
+ SubRec : Equiv (Sub (Rec t u v) sub) (Rec (Sub t sub) (Sub u sub) (Sub v $ lift sub))
+ SubSub : Equiv (Sub (Sub t sub1) sub2) (Sub t (sub2 . sub1))