summaryrefslogtreecommitdiff
path: root/src/Total/Term.idr
diff options
context:
space:
mode:
Diffstat (limited to 'src/Total/Term.idr')
-rw-r--r--src/Total/Term.idr357
1 files changed, 0 insertions, 357 deletions
diff --git a/src/Total/Term.idr b/src/Total/Term.idr
deleted file mode 100644
index 129662a..0000000
--- a/src/Total/Term.idr
+++ /dev/null
@@ -1,357 +0,0 @@
-module Total.Term
-
-import public Data.SnocList.Elem
-import public Thinning
-import Syntax.PreorderReasoning
-
-%prefix_record_projections off
-
-infixr 10 ~>
-
-public export
-data Ty : Type where
- N : Ty
- (~>) : Ty -> Ty -> Ty
-
-%name Ty ty
-
-public export
-data Term : SnocList Ty -> Ty -> Type where
- Var : (i : Elem ty ctx) -> Term ctx ty
- Abs : Term (ctx :< ty) ty' -> Term ctx (ty ~> ty')
- App : {ty : Ty} -> Term ctx (ty ~> ty') -> Term ctx ty -> Term ctx ty'
- Zero : Term ctx N
- Suc : Term ctx N -> Term ctx N
- Rec : Term ctx N -> Term ctx ty -> Term ctx (ty ~> ty) -> Term ctx ty
-
-%name Term t, u, v
-
-public export
-wkn : Term ctx ty -> ctx `Thins` ctx' -> Term ctx' ty
-wkn (Var i) thin = Var (index thin i)
-wkn (Abs t) thin = Abs (wkn t $ Keep thin)
-wkn (App t u) thin = App (wkn t thin) (wkn u thin)
-wkn Zero thin = Zero
-wkn (Suc t) thin = Suc (wkn t thin)
-wkn (Rec t u v) thin = Rec (wkn t thin) (wkn u thin) (wkn v thin)
-
-public export
-data Terms : SnocList Ty -> SnocList Ty -> Type where
- Base : ctx `Thins` ctx' -> Terms ctx' ctx
- (:<) : Terms ctx' ctx -> Term ctx' ty -> Terms ctx' (ctx :< ty)
-
-%name Terms sub
-
-public export
-index : Terms ctx' ctx -> Elem ty ctx -> Term ctx' ty
-index (Base thin) i = Var (index thin i)
-index (sub :< t) Here = t
-index (sub :< t) (There i) = index sub i
-
-public export
-wknAll : Terms ctx' ctx -> ctx' `Thins` ctx'' -> Terms ctx'' ctx
-wknAll (Base thin') thin = Base (thin . thin')
-wknAll (sub :< t) thin = wknAll sub thin :< wkn t thin
-
-public export
-subst : Len ctx' => Term ctx ty -> Terms ctx' ctx -> Term ctx' ty
-subst (Var i) sub = index sub i
-subst (Abs t) sub = Abs (subst t $ wknAll sub (Drop id) :< Var Here)
-subst (App t u) sub = App (subst t sub) (subst u sub)
-subst Zero sub = Zero
-subst (Suc t) sub = Suc (subst t sub)
-subst (Rec t u v) sub = Rec (subst t sub) (subst u sub) (subst v sub)
-
-public export
-restrict : Terms ctx'' ctx' -> ctx `Thins` ctx' -> Terms ctx'' ctx
-restrict (Base thin') thin = Base (thin' . thin)
-restrict (sub :< t) (Drop thin) = restrict sub thin
-restrict (sub :< t) (Keep thin) = restrict sub thin :< t
-
-public export
-(.) : Len ctx'' => Terms ctx'' ctx' -> Terms ctx' ctx -> Terms ctx'' ctx
-sub2 . (Base thin) = restrict sub2 thin
-sub2 . (sub1 :< t) = sub2 . sub1 :< subst t sub2
-
--- Properties ------------------------------------------------------------------
-
--- Utilities
-
-export
-cong3 : (0 f : a -> b -> c -> d) -> x1 = x2 -> y1 = y2 -> z1 = z2 -> f x1 y1 z1 = f x2 y2 z2
-cong3 f Refl Refl Refl = Refl
-
--- Weakening
-
-export
-wknHomo :
- (t : Term ctx ty) ->
- (thin1 : ctx `Thins` ctx') ->
- (thin2 : ctx' `Thins` ctx'') ->
- wkn (wkn t thin1) thin2 = wkn t (thin2 . thin1)
-wknHomo (Var i) thin1 thin2 =
- cong Var (indexHomo thin2 thin1 i)
-wknHomo (Abs t) thin1 thin2 =
- cong Abs (wknHomo t (Keep thin1) (Keep thin2))
-wknHomo (App t u) thin1 thin2 =
- cong2 App (wknHomo t thin1 thin2) (wknHomo u thin1 thin2)
-wknHomo Zero thin1 thin2 =
- Refl
-wknHomo (Suc t) thin1 thin2 =
- cong Suc (wknHomo t thin1 thin2)
-wknHomo (Rec t u v) thin1 thin2 =
- cong3 Rec (wknHomo t thin1 thin2) (wknHomo u thin1 thin2) (wknHomo v thin1 thin2)
-
-export
-wknId : Len ctx => (t : Term ctx ty) -> wkn t Thinning.id = t
-wknId (Var i) = cong Var (indexId i)
-wknId (Abs t) = cong Abs (wknId t)
-wknId (App t u) = cong2 App (wknId t) (wknId u)
-wknId Zero = Refl
-wknId (Suc t) = cong Suc (wknId t)
-wknId (Rec t u v) = cong3 Rec (wknId t) (wknId u) (wknId v)
-
-indexWknAll :
- (sub : Terms ctx' ctx) ->
- (thin : ctx' `Thins` ctx'') ->
- (i : Elem ty ctx) ->
- index (wknAll sub thin) i = wkn (index sub i) thin
-indexWknAll (Base thin') thin i = sym $ cong Var $ indexHomo thin thin' i
-indexWknAll (sub :< t) thin Here = Refl
-indexWknAll (sub :< t) thin (There i) = indexWknAll sub thin i
-
-wknAllHomo :
- (sub : Terms ctx ctx''') ->
- (thin1 : ctx `Thins` ctx') ->
- (thin2 : ctx' `Thins` ctx'') ->
- wknAll (wknAll sub thin1) thin2 = wknAll sub (thin2 . thin1)
-wknAllHomo (Base thin) thin1 thin2 = cong Base (assoc thin2 thin1 thin)
-wknAllHomo (sub :< t) thin1 thin2 = cong2 (:<) (wknAllHomo sub thin1 thin2) (wknHomo t thin1 thin2)
-
--- Restrict
-
-indexRestrict :
- (thin : ctx `Thins` ctx') ->
- (sub : Terms ctx'' ctx') ->
- (i : Elem ty ctx) ->
- index (restrict sub thin) i = index sub (index thin i)
-indexRestrict thin (Base thin') i = sym $ cong Var $ indexHomo thin' thin i
-indexRestrict (Drop thin) (sub :< t) i = indexRestrict thin sub i
-indexRestrict (Keep thin) (sub :< t) Here = Refl
-indexRestrict (Keep thin) (sub :< t) (There i) = indexRestrict thin sub i
-
-restrictId : (len : Len ctx) => (sub : Terms ctx' ctx) -> restrict sub (id @{len}) = sub
-restrictId (Base thin) = cong Base (identityRight thin)
-restrictId {len = S k} (sub :< t) = cong (:< t) (restrictId sub)
-
-restrictHomo :
- (sub : Terms ctx ctx''') ->
- (thin1 : ctx'' `Thins` ctx''') ->
- (thin2 : ctx' `Thins` ctx'') ->
- restrict sub (thin1 . thin2) = restrict (restrict sub thin1) thin2
-restrictHomo (Base thin) thin1 thin2 = cong Base (assoc thin thin1 thin2)
-restrictHomo (sub :< t) (Drop thin1) thin2 = restrictHomo sub thin1 thin2
-restrictHomo (sub :< t) (Keep thin1) (Drop thin2) = restrictHomo sub thin1 thin2
-restrictHomo (sub :< t) (Keep thin1) (Keep thin2) = cong (:< t) $ restrictHomo sub thin1 thin2
-
-wknAllRestrict :
- (thin1 : ctx `Thins` ctx') ->
- (sub : Terms ctx'' ctx') ->
- (thin2 : ctx'' `Thins` ctx''') ->
- restrict (wknAll sub thin2) thin1 = wknAll (restrict sub thin1) thin2
-wknAllRestrict thin1 (Base thin) thin2 = sym $ cong Base $ assoc thin2 thin thin1
-wknAllRestrict (Drop thin) (sub :< t) thin2 = wknAllRestrict thin sub thin2
-wknAllRestrict (Keep thin) (sub :< t) thin2 = cong (:< wkn t thin2) (wknAllRestrict thin sub thin2)
-
--- Substitution & Weakening
-
-export
-wknSubst :
- (t : Term ctx ty) ->
- (sub : Terms ctx' ctx) ->
- (thin : ctx' `Thins` ctx'') ->
- wkn (subst t sub) thin = subst t (wknAll sub thin)
-wknSubst (Var i) sub thin =
- sym (indexWknAll sub thin i)
-wknSubst (Abs t) sub thin =
- cong Abs $ Calc $
- |~ wkn (subst t (wknAll sub (Drop id) :< Var Here)) (Keep thin)
- ~~ subst t (wknAll (wknAll sub (Drop id)) (Keep thin) :< Var (index (Keep thin) Here))
- ...(wknSubst t (wknAll sub (Drop id) :< Var Here) (Keep thin))
- ~~ subst t (wknAll sub (Keep thin . Drop id) :< Var Here)
- ...(cong (subst t . (:< Var Here)) (wknAllHomo sub (Drop id) (Keep thin)))
- ~~ subst t (wknAll sub (Drop id . thin) :< Var Here)
- ...(cong (subst t . (:< Var Here) . wknAll sub . Drop) $ trans (identityRight thin) (sym $ identityLeft thin))
- ~~ subst t (wknAll (wknAll sub thin) (Drop id) :< Var Here)
- ...(sym $ cong (subst t . (:< Var Here)) $ wknAllHomo sub thin (Drop id))
-wknSubst (App t u) sub thin =
- cong2 App (wknSubst t sub thin) (wknSubst u sub thin)
-wknSubst Zero sub thin =
- Refl
-wknSubst (Suc t) sub thin =
- cong Suc (wknSubst t sub thin)
-wknSubst (Rec t u v) sub thin =
- cong3 Rec (wknSubst t sub thin) (wknSubst u sub thin) (wknSubst v sub thin)
-
-export
-substWkn :
- (t : Term ctx ty) ->
- (thin : ctx `Thins` ctx') ->
- (sub : Terms ctx'' ctx') ->
- subst (wkn t thin) sub = subst t (restrict sub thin)
-substWkn (Var i) thin sub =
- sym (indexRestrict thin sub i)
-substWkn (Abs t) thin sub =
- cong Abs $ Calc $
- |~ subst (wkn t $ Keep thin) (wknAll sub (Drop id) :< Var Here)
- ~~ subst t (restrict (wknAll sub (Drop id)) thin :< Var Here)
- ...(substWkn t (Keep thin) (wknAll sub (Drop id) :< Var Here))
- ~~ subst t (wknAll (restrict sub thin) (Drop id) :< Var Here)
- ...(cong (subst t . (:< Var Here)) $ wknAllRestrict thin sub (Drop id))
-substWkn (App t u) thin sub =
- cong2 App (substWkn t thin sub) (substWkn u thin sub)
-substWkn Zero thin sub =
- Refl
-substWkn (Suc t) thin sub =
- cong Suc (substWkn t thin sub)
-substWkn (Rec t u v) thin sub =
- cong3 Rec (substWkn t thin sub) (substWkn u thin sub) (substWkn v thin sub)
-
-namespace Equiv
- public export
- data Equiv : Terms ctx' ctx -> Terms ctx' ctx -> Type where
- Base : Equiv (Base (Keep thin)) (Base (Drop thin) :< Var Here)
- WknAll :
- (len : Len ctx) =>
- Equiv sub sub' ->
- Equiv
- (wknAll sub (Drop $ id @{len}) :< Var Here)
- (wknAll sub' (Drop $ id @{len}) :< Var Here)
-
- %name Equiv prf
-
-indexCong : Equiv sub sub' -> (i : Elem ty ctx) -> index sub i = index sub' i
-indexCong Base Here = Refl
-indexCong Base (There i) = Refl
-indexCong (WknAll prf) Here = Refl
-indexCong (WknAll {sub, sub'} prf) (There i) = Calc $
- |~ index (wknAll sub (Drop id)) i
- ~~ wkn (index sub i) (Drop id) ...(indexWknAll sub (Drop id) i)
- ~~ wkn (index sub' i) (Drop id) ...(cong (flip wkn (Drop id)) $ indexCong prf i)
- ~~ index (wknAll sub' (Drop id)) i ...(sym $ indexWknAll sub' (Drop id) i)
-
-substCong :
- (len : Len ctx') =>
- (t : Term ctx ty) ->
- {0 sub, sub' : Terms ctx' ctx} ->
- Equiv sub sub' ->
- subst t sub = subst t sub'
-substCong (Var i) prf = indexCong prf i
-substCong (Abs t) prf = cong Abs (substCong t (WknAll prf))
-substCong (App t u) prf = cong2 App (substCong t prf) (substCong u prf)
-substCong Zero prf = Refl
-substCong (Suc t) prf = cong Suc (substCong t prf)
-substCong (Rec t u v) prf = cong3 Rec (substCong t prf) (substCong u prf) (substCong v prf)
-
-substBase : (t : Term ctx ty) -> (thin : ctx `Thins` ctx') -> subst t (Base thin) = wkn t thin
-substBase (Var i) thin = Refl
-substBase (Abs t) thin =
- rewrite identityLeft thin in
- cong Abs $ Calc $
- |~ subst t (Base (Drop thin) :< Var Here)
- ~~ subst t (Base $ Keep thin) ...(sym $ substCong t Base)
- ~~ wkn t (Keep thin) ...(substBase t (Keep thin))
-substBase (App t u) thin = cong2 App (substBase t thin) (substBase u thin)
-substBase Zero thin = Refl
-substBase (Suc t) thin = cong Suc (substBase t thin)
-substBase (Rec t u v) thin = cong3 Rec (substBase t thin) (substBase u thin) (substBase v thin)
-
--- Substitution Composition
-
-indexComp :
- (sub1 : Terms ctx' ctx) ->
- (sub2 : Terms ctx'' ctx') ->
- (i : Elem ty ctx) ->
- index (sub2 . sub1) i = subst (index sub1 i) sub2
-indexComp (Base thin) sub2 i = indexRestrict thin sub2 i
-indexComp (sub1 :< t) sub2 Here = Refl
-indexComp (sub1 :< t) sub2 (There i) = indexComp sub1 sub2 i
-
-wknAllComp :
- (sub1 : Terms ctx' ctx) ->
- (sub2 : Terms ctx'' ctx') ->
- (thin : ctx'' `Thins` ctx''') ->
- wknAll sub2 thin . sub1 = wknAll (sub2 . sub1) thin
-wknAllComp (Base thin') sub2 thin = wknAllRestrict thin' sub2 thin
-wknAllComp (sub1 :< t) sub2 thin =
- cong2 (:<)
- (wknAllComp sub1 sub2 thin)
- (sym $ wknSubst t sub2 thin)
-
-compDrop :
- (sub1 : Terms ctx' ctx) ->
- (thin : ctx' `Thins` ctx'') ->
- (sub2 : Terms ctx''' ctx'') ->
- sub2 . wknAll sub1 thin = restrict sub2 thin . sub1
-compDrop (Base thin') thin sub2 = restrictHomo sub2 thin thin'
-compDrop (sub1 :< t) thin sub2 = cong2 (:<) (compDrop sub1 thin sub2) (substWkn t thin sub2)
-
-export
-compWknAll :
- (sub1 : Terms ctx' ctx) ->
- (sub2 : Terms ctx''' ctx'') ->
- (thin : ctx' `Thins` ctx'') ->
- sub2 . wknAll sub1 thin = restrict sub2 thin . sub1
-compWknAll (Base thin') sub2 thin = restrictHomo sub2 thin thin'
-compWknAll (sub1 :< t) sub2 thin = cong2 (:<) (compWknAll sub1 sub2 thin) (substWkn t thin sub2)
-
-export
-baseComp :
- (thin : ctx' `Thins` ctx'') ->
- (sub : Terms ctx' ctx) ->
- Base thin . sub = wknAll sub thin
-baseComp thin (Base thin') = Refl
-baseComp thin (sub :< t) = cong2 (:<) (baseComp thin sub) (substBase t thin)
-
--- Substitution
-
-export
-substId : (len : Len ctx) => (t : Term ctx ty) -> subst t (Base $ id @{len}) = t
-substId (Var i) = cong Var (indexId i)
-substId (Abs t) =
- rewrite identitySquared len in
- cong Abs $ trans (sym $ substCong t Base) (substId t)
-substId (App t u) = cong2 App (substId t) (substId u)
-substId Zero = Refl
-substId (Suc t) = cong Suc (substId t)
-substId (Rec t u v) = cong3 Rec (substId t) (substId u) (substId v)
-
-export
-substHomo :
- (t : Term ctx ty) ->
- (sub1 : Terms ctx' ctx) ->
- (sub2 : Terms ctx'' ctx') ->
- subst (subst t sub1) sub2 = subst t (sub2 . sub1)
-substHomo (Var i) sub1 sub2 =
- sym $ indexComp sub1 sub2 i
-substHomo (Abs t) sub1 sub2 =
- cong Abs $ Calc $
- |~ subst (subst t (wknAll sub1 (Drop id) :< Var Here)) (wknAll sub2 (Drop id) :< Var Here)
- ~~ subst t ((wknAll sub2 (Drop id) :< Var Here) . (wknAll sub1 (Drop id) :< Var Here))
- ...(substHomo t (wknAll sub1 (Drop id) :< Var Here) (wknAll sub2 (Drop id) :< Var Here))
- ~~ subst t ((wknAll sub2 (Drop id) :< Var Here) . wknAll sub1 (Drop id) :< Var Here)
- ...(Refl)
- ~~ subst t (restrict (wknAll sub2 (Drop id)) id . sub1 :< Var Here)
- ...(cong (subst t . (:< Var Here)) $ compDrop sub1 (Drop id) (wknAll sub2 (Drop id) :< Var Here))
- ~~ subst t (wknAll sub2 (Drop id) . sub1 :< Var Here)
- ...(cong (subst t . (:< Var Here) . (. sub1)) $ restrictId (wknAll sub2 (Drop id)))
- ~~ subst t (wknAll (sub2 . sub1) (Drop id) :< Var Here)
- ...(cong (subst t . (:< Var Here)) $ wknAllComp sub1 sub2 (Drop id))
-substHomo (App t u) sub1 sub2 =
- cong2 App (substHomo t sub1 sub2) (substHomo u sub1 sub2)
-substHomo Zero sub1 sub2 =
- Refl
-substHomo (Suc t) sub1 sub2 =
- cong Suc (substHomo t sub1 sub2)
-substHomo (Rec t u v) sub1 sub2 =
- cong3 Rec (substHomo t sub1 sub2) (substHomo u sub1 sub2) (substHomo v sub1 sub2)