diff options
Diffstat (limited to 'src/Total/Term/CoDebruijn.idr')
-rw-r--r-- | src/Total/Term/CoDebruijn.idr | 317 |
1 files changed, 0 insertions, 317 deletions
diff --git a/src/Total/Term/CoDebruijn.idr b/src/Total/Term/CoDebruijn.idr deleted file mode 100644 index 0efcdbb..0000000 --- a/src/Total/Term/CoDebruijn.idr +++ /dev/null @@ -1,317 +0,0 @@ -module Total.Term.CoDebruijn - -import public Data.SnocList.Elem -import public Thinning -import Syntax.PreorderReasoning -import Total.Term - -%prefix_record_projections off - --- Definition ------------------------------------------------------------------ - -public export -data CoTerm : Ty -> SnocList Ty -> Type where - Var : CoTerm ty [<ty] - Abs : Binds [<ty] (CoTerm ty') ctx -> CoTerm (ty ~> ty') ctx - App : {ty : Ty} -> Pair (CoTerm (ty ~> ty')) (CoTerm ty) ctx -> CoTerm ty' ctx - Zero : CoTerm N [<] - Suc : CoTerm N ctx -> CoTerm N ctx - Rec : Pair (CoTerm N) (Pair (CoTerm ty) (CoTerm (ty ~> ty))) ctx -> CoTerm ty ctx - -%name CoTerm t, u, v - -public export -FullTerm : Ty -> SnocList Ty -> Type -FullTerm ty ctx = Thinned (CoTerm ty) ctx - --- Smart Constructors ---------------------------------------------------------- - -public export -var : Len ctx => Elem ty ctx -> FullTerm ty ctx -var i = Var `Over` point i - -public export -abs : FullTerm ty' (ctx :< ty) -> FullTerm (ty ~> ty') ctx -abs = map Abs . MkBound (S Z) - -public export -app : {ty : Ty} -> FullTerm (ty ~> ty') ctx -> FullTerm ty ctx -> FullTerm ty' ctx -app t u = map App (MkPair t u) - -public export -zero : Len ctx => FullTerm N ctx -zero = Zero `Over` empty - -public export -suc : FullTerm N ctx -> FullTerm N ctx -suc = map Suc - -public export -rec : FullTerm N ctx -> FullTerm ty ctx -> FullTerm (ty ~> ty) ctx -> FullTerm ty ctx -rec t u v = map Rec $ MkPair t (MkPair u v) - --- Substitutions --------------------------------------------------------------- - -public export -data CoTerms : SnocList Ty -> SnocList Ty -> Type where - Lin : CoTerms [<] ctx' - (:<) : CoTerms ctx ctx' -> FullTerm ty ctx' -> CoTerms (ctx :< ty) ctx' - -%name CoTerms sub - -public export -index : CoTerms ctx ctx' -> Elem ty ctx -> FullTerm ty ctx' -index (sub :< t) Here = t -index (sub :< t) (There i) = index sub i - -public export -wknAll : CoTerms ctx ctx' -> ctx' `Thins` ctx'' -> CoTerms ctx ctx'' -wknAll [<] thin = [<] -wknAll (sub :< t) thin = wknAll sub thin :< wkn t thin - -public export -shift : CoTerms ctx ctx' -> CoTerms ctx (ctx' :< ty) -shift [<] = [<] -shift (sub :< t) = shift sub :< drop t - -public export -lift : Len ctx' => CoTerms ctx ctx' -> CoTerms (ctx :< ty) (ctx' :< ty) -lift sub = shift sub :< var Here - -public export -restrict : CoTerms ctx' ctx'' -> ctx `Thins` ctx' -> CoTerms ctx ctx'' -restrict [<] Empty = [<] -restrict (sub :< t) (Drop thin) = restrict sub thin -restrict (sub :< t) (Keep thin) = restrict sub thin :< t - -public export -Base : (len : Len ctx') => ctx `Thins` ctx' -> CoTerms ctx ctx' -Base Empty = [<] -Base {len = S k} (Drop thin) = shift (Base thin) -Base {len = S k} (Keep thin) = lift (Base thin) - --- Substitution Operation ------------------------------------------------------ - -public export -subst : Len ctx' => FullTerm ty ctx -> CoTerms ctx ctx' -> FullTerm ty ctx' -public export -subst' : Len ctx' => CoTerm ty ctx -> CoTerms ctx ctx' -> FullTerm ty ctx' - -subst (t `Over` thin) sub = subst' t (restrict sub thin) - -subst' Var sub = index sub Here -subst' (Abs (MakeBound t (Drop Empty))) sub = abs (subst' t $ shift sub) -subst' (Abs (MakeBound t (Keep Empty))) sub = abs (subst' t $ lift sub) -subst' (App (MakePair t u _)) sub = app (subst t sub) (subst u sub) -subst' Zero sub = zero -subst' (Suc t) sub = suc (subst' t sub) -subst' (Rec (MakePair t (MakePair u v _ `Over` thin) _)) sub = - rec (subst t sub) (subst u (restrict sub thin)) (subst v (restrict sub thin)) - --- Initiality ------------------------------------------------------------------ - -toTerm' : CoTerm ty ctx -> ctx `Thins` ctx' -> Term ctx' ty -toTerm' Var thin = Var (index thin Here) -toTerm' (Abs (MakeBound t (Drop Empty))) thin = Abs (toTerm' t (Drop thin)) -toTerm' (Abs (MakeBound t (Keep Empty))) thin = Abs (toTerm' t (Keep thin)) -toTerm' (App (MakePair (t `Over` thin1) (u `Over` thin2) _)) thin = - App (toTerm' t (thin . thin1)) (toTerm' u (thin . thin2)) -toTerm' Zero thin = Zero -toTerm' (Suc t) thin = Suc (toTerm' t thin) -toTerm' - (Rec - (MakePair - (t `Over` thin1) - (MakePair (u `Over` thin2) (v `Over` thin3) _ `Over` thin') _)) - thin = - Rec - (toTerm' t (thin . thin1)) - (toTerm' u ((thin . thin') . thin2)) - (toTerm' v ((thin . thin') . thin3)) - -export -toTerm : FullTerm ty ctx -> Term ctx ty -toTerm (t `Over` thin) = toTerm' t thin - -public export -toTerms : Len ctx' => CoTerms ctx ctx' -> Terms ctx' ctx -toTerms [<] = Base empty -toTerms (sub :< t) = toTerms sub :< toTerm t - -export -Cast (FullTerm ty ctx) (Term ctx ty) where - cast = toTerm - -export -Len ctx' => Cast (CoTerms ctx ctx') (Terms ctx' ctx) where - cast = toTerms - -export -Len ctx => Cast (Term ctx ty) (FullTerm ty ctx) where - cast (Var i) = Var `Over` point i - cast (Abs t) = abs (cast t) - cast (App {ty} t u) = app {ty} (cast t) (cast u) - cast Zero = zero - cast (Suc t) = suc (cast t) - cast (Rec t u v) = rec (cast t) (cast u) (cast v) - --- Properties ------------------------------------------------------------------ - -wknToTerm' : - (t : CoTerm ty ctx) -> - (thin : ctx `Thins` ctx') -> - (thin' : ctx' `Thins` ctx''') -> - wkn (toTerm' t thin) thin' = toTerm' t (thin' . thin) -wknToTerm' Var thin thin' = cong Var (indexHomo thin' thin Here) -wknToTerm' (Abs (MakeBound t (Drop Empty))) thin thin' = - cong Abs (wknToTerm' t (Drop thin) (Keep thin')) -wknToTerm' (Abs (MakeBound t (Keep Empty))) thin thin' = - cong Abs (wknToTerm' t (Keep thin) (Keep thin')) -wknToTerm' (App (MakePair (t `Over` thin1) (u `Over` thin2) _)) thin thin' = - rewrite sym $ assoc thin' thin thin1 in - rewrite sym $ assoc thin' thin thin2 in - cong2 App (wknToTerm' t (thin . thin1) thin') (wknToTerm' u (thin . thin2) thin') -wknToTerm' Zero thin thin' = Refl -wknToTerm' (Suc t) thin thin' = cong Suc (wknToTerm' t thin thin') -wknToTerm' - (Rec - (MakePair - (t `Over` thin1) - (MakePair (u `Over` thin2) (v `Over` thin3) _ `Over` thin'') _)) - thin - thin' = - rewrite sym $ assoc thin' thin thin1 in - rewrite sym $ assoc (thin' . thin) thin'' thin2 in - rewrite sym $ assoc thin' thin (thin'' . thin2) in - rewrite sym $ assoc thin thin'' thin2 in - rewrite sym $ assoc (thin' . thin) thin'' thin3 in - rewrite sym $ assoc thin' thin (thin'' . thin3) in - rewrite sym $ assoc thin thin'' thin3 in - cong3 Rec - (wknToTerm' t (thin . thin1) thin') - (wknToTerm' u (thin . (thin'' . thin2)) thin') - (wknToTerm' v (thin . (thin'' . thin3)) thin') - -export -wknToTerm : - (t : FullTerm ty ctx) -> - (thin : ctx `Thins` ctx') -> - wkn (toTerm t) thin = toTerm (wkn t thin) -wknToTerm (t `Over` thin') thin = wknToTerm' t thin' thin - -export -toTermVar : Len ctx => (i : Elem ty ctx) -> toTerm (var i) = Var i -toTermVar i = cong Var $ indexPoint i - -export -toTermApp : - (t : FullTerm (ty ~> ty') ctx) -> - (u : FullTerm ty ctx) -> - toTerm (app t u) = App (toTerm t) (toTerm u) -toTermApp (t `Over` thin1) (u `Over` thin2) = - cong2 App - (cong (toTerm' t) $ irrelevantEq $ triangleCorrect (coprod thin1 thin2).left) - (cong (toTerm' u) $ irrelevantEq $ triangleCorrect (coprod thin1 thin2).right) - -indexShift : - (sub : CoTerms ctx ctx') -> - (i : Elem ty ctx) -> - index (shift sub) i = drop (index sub i) -indexShift (sub :< t) Here = Refl -indexShift (sub :< t) (There i) = indexShift sub i - -indexBase : (thin : [<ty] `Thins` ctx') -> index (Base thin) Here = Var `Over` thin -indexBase (Drop thin) = trans (indexShift (Base thin) Here) (cong drop (indexBase thin)) -indexBase (Keep thin) = irrelevantEq $ cong ((Var `Over`) . Keep) $ emptyUnique empty thin - -restrictShift : - (sub : CoTerms ctx' ctx'') -> - (thin : ctx `Thins` ctx') -> - restrict (shift sub) thin = shift (restrict sub thin) -restrictShift [<] Empty = Refl -restrictShift (sub :< t) (Drop thin) = restrictShift sub thin -restrictShift (sub :< t) (Keep thin) = cong (:< drop t) (restrictShift sub thin) - -restrictBase : - (thin2 : ctx' `Thins` ctx'') -> - (thin1 : ctx `Thins` ctx') -> - CoDebruijn.restrict (Base thin2) thin1 = Base (thin2 . thin1) -restrictBase Empty Empty = Refl -restrictBase (Drop thin2) thin1 = - trans - (restrictShift (Base thin2) thin1) - (cong shift $ restrictBase thin2 thin1) -restrictBase (Keep thin2) (Drop thin1) = - trans - (restrictShift (Base thin2) thin1) - (cong shift $ restrictBase thin2 thin1) -restrictBase (Keep thin2) (Keep thin1) = - cong (:< (Var `Over` point Here)) $ - trans - (restrictShift (Base thin2) thin1) - (cong shift $ restrictBase thin2 thin1) - -substBase : - (t : CoTerm ty ctx) -> - (thin : ctx `Thins` ctx') -> - subst' t (Base thin) = t `Over` thin -substBase Var thin = indexBase thin -substBase (Abs (MakeBound t (Drop Empty))) thin = - Calc $ - |~ map Abs (MkBound (S Z) (subst' t (shift $ Base thin))) - ~~ map Abs (MkBound (S Z) (t `Over` Drop thin)) - ...(cong (map Abs . MkBound (S Z)) $ substBase t (Drop thin)) - ~~ map Abs (MakeBound t (Drop Empty) `Over` thin) - ...(Refl) - ~~ (Abs (MakeBound t (Drop Empty)) `Over` thin) - ...(Refl) -substBase (Abs (MakeBound t (Keep Empty))) thin = - Calc $ - |~ map Abs (MkBound (S Z) (subst' t (lift $ Base thin))) - ~~ map Abs (MkBound (S Z) (t `Over` Keep thin)) - ...(cong (map Abs . MkBound (S Z)) $ substBase t (Keep thin)) - ~~ map Abs (MakeBound t (Keep Empty) `Over` thin) - ...(Refl) - ~~ (Abs (MakeBound t (Keep Empty)) `Over` thin) - ...(Refl) -substBase (App (MakePair (t `Over` thin1) (u `Over` thin2) cover)) thin = - rewrite restrictBase thin thin1 in - rewrite restrictBase thin thin2 in - rewrite substBase t (thin . thin1) in - rewrite substBase u (thin . thin2) in - rewrite coprodEta thin cover in - Refl -substBase Zero thin = cong (Zero `Over`) $ irrelevantEq $ emptyUnique empty thin -substBase (Suc t) thin = cong (map Suc) $ substBase t thin -substBase - (Rec (MakePair - (t `Over` thin1) - (MakePair - (u `Over` thin2) - (v `Over` thin3) - cover' - `Over` thin') - cover)) - thin = - rewrite restrictBase thin thin1 in - rewrite restrictBase thin thin' in - rewrite restrictBase (thin . thin') thin2 in - rewrite restrictBase (thin . thin') thin3 in - rewrite substBase t (thin . thin1) in - rewrite substBase u ((thin . thin') . thin2) in - rewrite substBase v ((thin . thin') . thin3) in - rewrite coprodEta (thin . thin') cover' in - rewrite coprodEta thin cover in - Refl - -export -substId : (t : FullTerm ty ctx) -> subst t (Base Thinning.id) = t -substId (t `Over` thin) = - Calc $ - |~ subst' t (restrict (Base id) thin) - ~~ subst' t (Base $ id . thin) - ...(cong (subst' t) $ restrictBase id thin) - ~~ subst' t (Base thin) - ...(cong (subst' t . Base) $ identityLeft thin) - ~~ (t `Over` thin) - ...(substBase t thin) |