summaryrefslogtreecommitdiff
path: root/src/Total/Term/CoDebruijn.idr
diff options
context:
space:
mode:
Diffstat (limited to 'src/Total/Term/CoDebruijn.idr')
-rw-r--r--src/Total/Term/CoDebruijn.idr317
1 files changed, 0 insertions, 317 deletions
diff --git a/src/Total/Term/CoDebruijn.idr b/src/Total/Term/CoDebruijn.idr
deleted file mode 100644
index 0efcdbb..0000000
--- a/src/Total/Term/CoDebruijn.idr
+++ /dev/null
@@ -1,317 +0,0 @@
-module Total.Term.CoDebruijn
-
-import public Data.SnocList.Elem
-import public Thinning
-import Syntax.PreorderReasoning
-import Total.Term
-
-%prefix_record_projections off
-
--- Definition ------------------------------------------------------------------
-
-public export
-data CoTerm : Ty -> SnocList Ty -> Type where
- Var : CoTerm ty [<ty]
- Abs : Binds [<ty] (CoTerm ty') ctx -> CoTerm (ty ~> ty') ctx
- App : {ty : Ty} -> Pair (CoTerm (ty ~> ty')) (CoTerm ty) ctx -> CoTerm ty' ctx
- Zero : CoTerm N [<]
- Suc : CoTerm N ctx -> CoTerm N ctx
- Rec : Pair (CoTerm N) (Pair (CoTerm ty) (CoTerm (ty ~> ty))) ctx -> CoTerm ty ctx
-
-%name CoTerm t, u, v
-
-public export
-FullTerm : Ty -> SnocList Ty -> Type
-FullTerm ty ctx = Thinned (CoTerm ty) ctx
-
--- Smart Constructors ----------------------------------------------------------
-
-public export
-var : Len ctx => Elem ty ctx -> FullTerm ty ctx
-var i = Var `Over` point i
-
-public export
-abs : FullTerm ty' (ctx :< ty) -> FullTerm (ty ~> ty') ctx
-abs = map Abs . MkBound (S Z)
-
-public export
-app : {ty : Ty} -> FullTerm (ty ~> ty') ctx -> FullTerm ty ctx -> FullTerm ty' ctx
-app t u = map App (MkPair t u)
-
-public export
-zero : Len ctx => FullTerm N ctx
-zero = Zero `Over` empty
-
-public export
-suc : FullTerm N ctx -> FullTerm N ctx
-suc = map Suc
-
-public export
-rec : FullTerm N ctx -> FullTerm ty ctx -> FullTerm (ty ~> ty) ctx -> FullTerm ty ctx
-rec t u v = map Rec $ MkPair t (MkPair u v)
-
--- Substitutions ---------------------------------------------------------------
-
-public export
-data CoTerms : SnocList Ty -> SnocList Ty -> Type where
- Lin : CoTerms [<] ctx'
- (:<) : CoTerms ctx ctx' -> FullTerm ty ctx' -> CoTerms (ctx :< ty) ctx'
-
-%name CoTerms sub
-
-public export
-index : CoTerms ctx ctx' -> Elem ty ctx -> FullTerm ty ctx'
-index (sub :< t) Here = t
-index (sub :< t) (There i) = index sub i
-
-public export
-wknAll : CoTerms ctx ctx' -> ctx' `Thins` ctx'' -> CoTerms ctx ctx''
-wknAll [<] thin = [<]
-wknAll (sub :< t) thin = wknAll sub thin :< wkn t thin
-
-public export
-shift : CoTerms ctx ctx' -> CoTerms ctx (ctx' :< ty)
-shift [<] = [<]
-shift (sub :< t) = shift sub :< drop t
-
-public export
-lift : Len ctx' => CoTerms ctx ctx' -> CoTerms (ctx :< ty) (ctx' :< ty)
-lift sub = shift sub :< var Here
-
-public export
-restrict : CoTerms ctx' ctx'' -> ctx `Thins` ctx' -> CoTerms ctx ctx''
-restrict [<] Empty = [<]
-restrict (sub :< t) (Drop thin) = restrict sub thin
-restrict (sub :< t) (Keep thin) = restrict sub thin :< t
-
-public export
-Base : (len : Len ctx') => ctx `Thins` ctx' -> CoTerms ctx ctx'
-Base Empty = [<]
-Base {len = S k} (Drop thin) = shift (Base thin)
-Base {len = S k} (Keep thin) = lift (Base thin)
-
--- Substitution Operation ------------------------------------------------------
-
-public export
-subst : Len ctx' => FullTerm ty ctx -> CoTerms ctx ctx' -> FullTerm ty ctx'
-public export
-subst' : Len ctx' => CoTerm ty ctx -> CoTerms ctx ctx' -> FullTerm ty ctx'
-
-subst (t `Over` thin) sub = subst' t (restrict sub thin)
-
-subst' Var sub = index sub Here
-subst' (Abs (MakeBound t (Drop Empty))) sub = abs (subst' t $ shift sub)
-subst' (Abs (MakeBound t (Keep Empty))) sub = abs (subst' t $ lift sub)
-subst' (App (MakePair t u _)) sub = app (subst t sub) (subst u sub)
-subst' Zero sub = zero
-subst' (Suc t) sub = suc (subst' t sub)
-subst' (Rec (MakePair t (MakePair u v _ `Over` thin) _)) sub =
- rec (subst t sub) (subst u (restrict sub thin)) (subst v (restrict sub thin))
-
--- Initiality ------------------------------------------------------------------
-
-toTerm' : CoTerm ty ctx -> ctx `Thins` ctx' -> Term ctx' ty
-toTerm' Var thin = Var (index thin Here)
-toTerm' (Abs (MakeBound t (Drop Empty))) thin = Abs (toTerm' t (Drop thin))
-toTerm' (Abs (MakeBound t (Keep Empty))) thin = Abs (toTerm' t (Keep thin))
-toTerm' (App (MakePair (t `Over` thin1) (u `Over` thin2) _)) thin =
- App (toTerm' t (thin . thin1)) (toTerm' u (thin . thin2))
-toTerm' Zero thin = Zero
-toTerm' (Suc t) thin = Suc (toTerm' t thin)
-toTerm'
- (Rec
- (MakePair
- (t `Over` thin1)
- (MakePair (u `Over` thin2) (v `Over` thin3) _ `Over` thin') _))
- thin =
- Rec
- (toTerm' t (thin . thin1))
- (toTerm' u ((thin . thin') . thin2))
- (toTerm' v ((thin . thin') . thin3))
-
-export
-toTerm : FullTerm ty ctx -> Term ctx ty
-toTerm (t `Over` thin) = toTerm' t thin
-
-public export
-toTerms : Len ctx' => CoTerms ctx ctx' -> Terms ctx' ctx
-toTerms [<] = Base empty
-toTerms (sub :< t) = toTerms sub :< toTerm t
-
-export
-Cast (FullTerm ty ctx) (Term ctx ty) where
- cast = toTerm
-
-export
-Len ctx' => Cast (CoTerms ctx ctx') (Terms ctx' ctx) where
- cast = toTerms
-
-export
-Len ctx => Cast (Term ctx ty) (FullTerm ty ctx) where
- cast (Var i) = Var `Over` point i
- cast (Abs t) = abs (cast t)
- cast (App {ty} t u) = app {ty} (cast t) (cast u)
- cast Zero = zero
- cast (Suc t) = suc (cast t)
- cast (Rec t u v) = rec (cast t) (cast u) (cast v)
-
--- Properties ------------------------------------------------------------------
-
-wknToTerm' :
- (t : CoTerm ty ctx) ->
- (thin : ctx `Thins` ctx') ->
- (thin' : ctx' `Thins` ctx''') ->
- wkn (toTerm' t thin) thin' = toTerm' t (thin' . thin)
-wknToTerm' Var thin thin' = cong Var (indexHomo thin' thin Here)
-wknToTerm' (Abs (MakeBound t (Drop Empty))) thin thin' =
- cong Abs (wknToTerm' t (Drop thin) (Keep thin'))
-wknToTerm' (Abs (MakeBound t (Keep Empty))) thin thin' =
- cong Abs (wknToTerm' t (Keep thin) (Keep thin'))
-wknToTerm' (App (MakePair (t `Over` thin1) (u `Over` thin2) _)) thin thin' =
- rewrite sym $ assoc thin' thin thin1 in
- rewrite sym $ assoc thin' thin thin2 in
- cong2 App (wknToTerm' t (thin . thin1) thin') (wknToTerm' u (thin . thin2) thin')
-wknToTerm' Zero thin thin' = Refl
-wknToTerm' (Suc t) thin thin' = cong Suc (wknToTerm' t thin thin')
-wknToTerm'
- (Rec
- (MakePair
- (t `Over` thin1)
- (MakePair (u `Over` thin2) (v `Over` thin3) _ `Over` thin'') _))
- thin
- thin' =
- rewrite sym $ assoc thin' thin thin1 in
- rewrite sym $ assoc (thin' . thin) thin'' thin2 in
- rewrite sym $ assoc thin' thin (thin'' . thin2) in
- rewrite sym $ assoc thin thin'' thin2 in
- rewrite sym $ assoc (thin' . thin) thin'' thin3 in
- rewrite sym $ assoc thin' thin (thin'' . thin3) in
- rewrite sym $ assoc thin thin'' thin3 in
- cong3 Rec
- (wknToTerm' t (thin . thin1) thin')
- (wknToTerm' u (thin . (thin'' . thin2)) thin')
- (wknToTerm' v (thin . (thin'' . thin3)) thin')
-
-export
-wknToTerm :
- (t : FullTerm ty ctx) ->
- (thin : ctx `Thins` ctx') ->
- wkn (toTerm t) thin = toTerm (wkn t thin)
-wknToTerm (t `Over` thin') thin = wknToTerm' t thin' thin
-
-export
-toTermVar : Len ctx => (i : Elem ty ctx) -> toTerm (var i) = Var i
-toTermVar i = cong Var $ indexPoint i
-
-export
-toTermApp :
- (t : FullTerm (ty ~> ty') ctx) ->
- (u : FullTerm ty ctx) ->
- toTerm (app t u) = App (toTerm t) (toTerm u)
-toTermApp (t `Over` thin1) (u `Over` thin2) =
- cong2 App
- (cong (toTerm' t) $ irrelevantEq $ triangleCorrect (coprod thin1 thin2).left)
- (cong (toTerm' u) $ irrelevantEq $ triangleCorrect (coprod thin1 thin2).right)
-
-indexShift :
- (sub : CoTerms ctx ctx') ->
- (i : Elem ty ctx) ->
- index (shift sub) i = drop (index sub i)
-indexShift (sub :< t) Here = Refl
-indexShift (sub :< t) (There i) = indexShift sub i
-
-indexBase : (thin : [<ty] `Thins` ctx') -> index (Base thin) Here = Var `Over` thin
-indexBase (Drop thin) = trans (indexShift (Base thin) Here) (cong drop (indexBase thin))
-indexBase (Keep thin) = irrelevantEq $ cong ((Var `Over`) . Keep) $ emptyUnique empty thin
-
-restrictShift :
- (sub : CoTerms ctx' ctx'') ->
- (thin : ctx `Thins` ctx') ->
- restrict (shift sub) thin = shift (restrict sub thin)
-restrictShift [<] Empty = Refl
-restrictShift (sub :< t) (Drop thin) = restrictShift sub thin
-restrictShift (sub :< t) (Keep thin) = cong (:< drop t) (restrictShift sub thin)
-
-restrictBase :
- (thin2 : ctx' `Thins` ctx'') ->
- (thin1 : ctx `Thins` ctx') ->
- CoDebruijn.restrict (Base thin2) thin1 = Base (thin2 . thin1)
-restrictBase Empty Empty = Refl
-restrictBase (Drop thin2) thin1 =
- trans
- (restrictShift (Base thin2) thin1)
- (cong shift $ restrictBase thin2 thin1)
-restrictBase (Keep thin2) (Drop thin1) =
- trans
- (restrictShift (Base thin2) thin1)
- (cong shift $ restrictBase thin2 thin1)
-restrictBase (Keep thin2) (Keep thin1) =
- cong (:< (Var `Over` point Here)) $
- trans
- (restrictShift (Base thin2) thin1)
- (cong shift $ restrictBase thin2 thin1)
-
-substBase :
- (t : CoTerm ty ctx) ->
- (thin : ctx `Thins` ctx') ->
- subst' t (Base thin) = t `Over` thin
-substBase Var thin = indexBase thin
-substBase (Abs (MakeBound t (Drop Empty))) thin =
- Calc $
- |~ map Abs (MkBound (S Z) (subst' t (shift $ Base thin)))
- ~~ map Abs (MkBound (S Z) (t `Over` Drop thin))
- ...(cong (map Abs . MkBound (S Z)) $ substBase t (Drop thin))
- ~~ map Abs (MakeBound t (Drop Empty) `Over` thin)
- ...(Refl)
- ~~ (Abs (MakeBound t (Drop Empty)) `Over` thin)
- ...(Refl)
-substBase (Abs (MakeBound t (Keep Empty))) thin =
- Calc $
- |~ map Abs (MkBound (S Z) (subst' t (lift $ Base thin)))
- ~~ map Abs (MkBound (S Z) (t `Over` Keep thin))
- ...(cong (map Abs . MkBound (S Z)) $ substBase t (Keep thin))
- ~~ map Abs (MakeBound t (Keep Empty) `Over` thin)
- ...(Refl)
- ~~ (Abs (MakeBound t (Keep Empty)) `Over` thin)
- ...(Refl)
-substBase (App (MakePair (t `Over` thin1) (u `Over` thin2) cover)) thin =
- rewrite restrictBase thin thin1 in
- rewrite restrictBase thin thin2 in
- rewrite substBase t (thin . thin1) in
- rewrite substBase u (thin . thin2) in
- rewrite coprodEta thin cover in
- Refl
-substBase Zero thin = cong (Zero `Over`) $ irrelevantEq $ emptyUnique empty thin
-substBase (Suc t) thin = cong (map Suc) $ substBase t thin
-substBase
- (Rec (MakePair
- (t `Over` thin1)
- (MakePair
- (u `Over` thin2)
- (v `Over` thin3)
- cover'
- `Over` thin')
- cover))
- thin =
- rewrite restrictBase thin thin1 in
- rewrite restrictBase thin thin' in
- rewrite restrictBase (thin . thin') thin2 in
- rewrite restrictBase (thin . thin') thin3 in
- rewrite substBase t (thin . thin1) in
- rewrite substBase u ((thin . thin') . thin2) in
- rewrite substBase v ((thin . thin') . thin3) in
- rewrite coprodEta (thin . thin') cover' in
- rewrite coprodEta thin cover in
- Refl
-
-export
-substId : (t : FullTerm ty ctx) -> subst t (Base Thinning.id) = t
-substId (t `Over` thin) =
- Calc $
- |~ subst' t (restrict (Base id) thin)
- ~~ subst' t (Base $ id . thin)
- ...(cong (subst' t) $ restrictBase id thin)
- ~~ subst' t (Base thin)
- ...(cong (subst' t . Base) $ identityLeft thin)
- ~~ (t `Over` thin)
- ...(substBase t thin)