From a4e196edb985645402a20e14dba2057151c80fe1 Mon Sep 17 00:00:00 2001 From: Chloe Brown Date: Tue, 23 May 2023 15:57:57 +0100 Subject: Define terms and thinnings. --- src/Term.idr | 83 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 83 insertions(+) create mode 100644 src/Term.idr (limited to 'src/Term.idr') diff --git a/src/Term.idr b/src/Term.idr new file mode 100644 index 0000000..a21f50a --- /dev/null +++ b/src/Term.idr @@ -0,0 +1,83 @@ +module Term + +import Data.SnocList +import Data.SnocList.Elem +import Data.SnocList.Quantifiers +import Thinning + +infixr 20 ~> + +-- Types ----------------------------------------------------------------------- + +data Ty : Type where + N : Ty + (~>) : Ty -> Ty -> Ty + +%name Ty ty + +-- Terms ----------------------------------------------------------------------- + +data Term : SnocList Ty -> Ty -> Type +data Subst : SnocList Ty -> SnocList Ty -> Type + +data Term where + Var : (i : Elem ty ctx) -> Term ctx ty + Abs : Term (ctx :< ty) ty' -> Term ctx (ty ~> ty') + App : Term ctx (ty ~> ty') -> Term ctx ty -> Term ctx ty' + Zero : Term ctx N + Succ : Term ctx N -> Term ctx N + Rec : Term ctx N -> Term ctx ty -> Term (ctx :< ty) ty -> Term ctx ty + Sub : Term ctx ty -> Subst ctx' ctx -> Term ctx' ty + +data Subst where + Base : ctx' `Thins` ctx -> Subst ctx ctx' + (:<) : Subst ctx ctx' -> Term ctx ty -> Subst ctx (ctx' :< ty) + +%name Term t, u, v +%name Subst sub + +shift : Subst ctx ctx' -> Subst (ctx :< ty) ctx' +shift (Base thin) = Base (Drop thin) +shift (sub :< t) = shift sub :< Sub t (Base (Drop Id)) + +lift : Subst ctx ctx' -> Subst (ctx :< ty) (ctx' :< ty) +lift (Base thin) = Base (keep thin) +lift (sub :< t) = shift (sub :< t) :< Var Here + +indexSubst : Subst ctx' ctx -> Elem ty ctx -> Term ctx' ty +indexSubst (Base thin) i = Var (index thin i) +indexSubst (sub :< t) Here = t +indexSubst (sub :< t) (There i) = indexSubst sub i + +restrict : Subst ctx1 ctx2 -> ctx3 `Thins` ctx2 -> Subst ctx1 ctx3 +restrict (Base thin') thin = Base (thin' . thin) +restrict (sub :< t) Id = sub :< t +restrict (sub :< t) (Drop thin) = restrict sub thin +restrict (sub :< t) (Keep thin) = restrict sub thin :< t + +(.) : Subst ctx1 ctx2 -> Subst ctx2 ctx3 -> Subst ctx1 ctx3 +sub2 . Base thin = restrict sub2 thin +sub2 . (sub1 :< t) = sub2 . sub1 :< Sub t sub2 + +-- Equivalence ----------------------------------------------------------------- + +data Equiv : Term ctx ty -> Term ctx ty -> Type + +data Equiv where + Refl : Equiv t t + Sym : Equiv t u -> Equiv u t + Trans : Equiv t u -> Equiv u v -> Equiv t v + AbsCong : Equiv t u -> Equiv (Abs t) (Abs u) + AppCong : Equiv t1 t2 -> Equiv u1 u2 -> Equiv (App t1 u1) (App t2 u2) + SuccCong : Equiv t u -> Equiv (Succ t) (Succ u) + RecCong : Equiv t1 t2 -> Equiv u1 u2 -> Equiv v1 v2 -> Equiv (Rec t1 u1 v1) (Rec t2 u2 v2) + PiBeta : Equiv (App (Abs t) u) (Sub t (Base Id :< u)) + NatBetaZ : Equiv (Rec Zero t u) t + NatBetaS : Equiv (Rec (Succ t) u v) (Sub v (Base Id :< Rec t u v)) + SubVar : Equiv (Sub (Var i) sub) (indexSubst sub i) + SubAbs : Equiv (Sub (Abs t) sub) (Abs (Sub t $ lift sub)) + SubApp : Equiv (Sub (App t u) sub) (App (Sub t sub) (Sub u sub)) + SubZero : Equiv (Sub Zero sub) Zero + SubSucc : Equiv (Sub (Succ t) sub) (Succ (Sub t sub)) + SubRec : Equiv (Sub (Rec t u v) sub) (Rec (Sub t sub) (Sub u sub) (Sub v $ lift sub)) + SubSub : Equiv (Sub (Sub t sub1) sub2) (Sub t (sub2 . sub1)) -- cgit v1.2.3