1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
module Encoded.Union
import Term.Syntax
export
(<+>) : Ty -> Ty -> Ty
N <+> N = N
N <+> (ty2 ~> ty2') = ty2 ~> (N <+> ty2')
(ty1 ~> ty1') <+> N = ty1 ~> (ty1' <+> N)
(ty1 ~> ty1') <+> (ty2 ~> ty2') = (ty1 <+> ty2) ~> (ty1' <+> ty2')
export
swap : {ty1, ty2 : Ty} -> Term ((ty1 <+> ty2) ~> (ty2 <+> ty1)) ctx
swap {ty1 = N, ty2 = N} = Id
swap {ty1 = N, ty2 = ty2 ~> ty2'} = Abs' (\f => swap . f)
swap {ty1 = ty1 ~> ty1', ty2 = N} = Abs' (\f => swap . f)
swap {ty1 = ty1 ~> ty1', ty2 = ty2 ~> ty2'} = Abs' (\f => swap . f . swap)
export
inL : {ty1, ty2 : Ty} -> Term (ty1 ~> (ty1 <+> ty2)) ctx
export
prL : {ty1, ty2 : Ty} -> Term ((ty1 <+> ty2) ~> ty1) ctx
inL {ty1 = N, ty2 = N} = Id
inL {ty1 = N, ty2 = ty2 ~> ty2'} = Abs' (\n => Const (App inL [<n]))
inL {ty1 = ty1 ~> ty1', ty2 = N} = Abs' (\f => inL . f)
inL {ty1 = ty1 ~> ty1', ty2 = ty2 ~> ty2'} = Abs' (\f => inL . f . prL)
prL {ty1 = N, ty2 = N} = Id
prL {ty1 = N, ty2 = ty2 ~> ty2'} = Abs' (\t => App prL [<App t [<Arb]])
prL {ty1 = ty1 ~> ty1', ty2 = N} = Abs' (\t => prL . t)
prL {ty1 = ty1 ~> ty1', ty2 = ty2 ~> ty2'} = Abs' (\t => prL . t . inL)
export
inR : {ty1, ty2 : Ty} -> Term (ty2 ~> (ty1 <+> ty2)) ctx
inR = swap . inL
export
prR : {ty1, ty2 : Ty} -> Term ((ty1 <+> ty2) ~> ty2) ctx
prR = prL . swap
|