blob: 51fd23634f5dedca33bb283c204ced5c780f07cf (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|
module Level0
import Data.SnocList.Elem
import NormalForm
import Term
import Thinning
record Cont (a : Type) where
constructor Then
runCont : forall res. (a -> res) -> res
Functor Cont where
map f (Then g) = Then (\k => k (g f))
Applicative Cont where
pure x = Then (\k => k x)
Then f <*> Then v = Then (\k => f (\j => v (k . j)))
Monad Cont where
join (Then f) = Then (\k => f (\c => runCont c k))
public export
data NormSubst : SnocList Ty -> SnocList Ty -> Type where
Base : ctx' `Thins` ctx -> NormSubst ctx ctx'
(:<) : NormSubst ctx ctx' -> Normal ctx ty -> NormSubst ctx (ctx' :< ty)
%name NormSubst sub
shift : NormSubst ctx ctx' -> NormSubst (ctx :< ty) ctx'
shift (Base thin) = Base (Drop thin)
shift (sub :< t) = shift sub :< wknNorm t (Drop Id)
lift : NormSubst ctx ctx' -> NormSubst (ctx :< ty) (ctx' :< ty)
lift (Base thin) = Base (keep thin)
lift (sub :< t) = shift (sub :< t) :< Ntrl (Var Here)
index : NormSubst ctx' ctx -> Elem ty ctx -> Normal ctx' ty
index (Base thin) i = Ntrl (Var $ index thin i)
index (sub :< t) Here = t
index (sub :< t) (There i) = index sub i
restrict : NormSubst ctx1 ctx2 -> ctx3 `Thins` ctx2 -> NormSubst ctx1 ctx3
restrict (Base thin') thin = Base (thin' . thin)
restrict (sub :< t) Id = sub :< t
restrict (sub :< t) (Drop thin) = restrict sub thin
restrict (sub :< t) (Keep thin) = restrict sub thin :< t
-- Evaluates a term in a context of normal forms.
partial
eval : Term ctx ty -> NormSubst ctx' ctx -> Cont (Normal ctx' ty)
partial
evalSub : Subst ctx ctx'' -> NormSubst ctx' ctx -> Cont (NormSubst ctx' ctx'')
partial
rec : Normal ctx N -> Normal ctx ty -> Normal (ctx :< ty) ty -> Cont (Normal ctx ty)
eval (Var i) sub = pure (index sub i)
eval (Abs t) sub = [| Abs (eval t $ lift sub) |]
eval (App t u) sub = do
t <- eval t sub
case t of
Abs t => do
u <- eval u sub
eval (forgetNorm t) (Base Id :< u)
Ntrl t => Ntrl <$> App t <$> eval u sub
eval Zero sub = pure Zero
eval (Succ t) sub = [| Succ (eval t sub) |]
eval (Rec t u v) sub = do
t <- eval t sub
u <- eval u sub
v <- eval v (lift sub)
rec t u v
eval (Sub t sub') sub = do
sub' <- evalSub sub' sub
eval t sub'
evalSub (Base thin) sub' = pure (restrict sub' thin)
evalSub (sub :< t) sub' = [| evalSub sub sub' :< eval t sub' |]
rec Zero u v = pure u
rec (Succ t) u v = do
val <- rec t u v
eval (forgetNorm v) (Base Id :< val)
rec (Ntrl t) u v = pure (Ntrl $ Rec t u v)
|