summaryrefslogtreecommitdiff
path: root/src/Total/Reduction.idr
blob: b11665b3f062727e8169ab3ed4e7bcbe8325d9b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
module Total.Reduction

import Syntax.PreorderReasoning
import Total.Term

public export
data (>) : Term ctx ty -> Term ctx ty -> Type where
  AbsCong : t > u -> Abs t > Abs u
  AppCong1 : t > u -> App t v > App u v
  AppCong2 : u > v -> App t u > App t v
  AppBeta :
    (0 len : Len ctx) ->
    App (Abs t) u > subst t (Base (id @{len}) :< u)
  SucCong : t > u -> Suc t > Suc u
  RecCong1 : t1 > t2 -> Rec t1 u v > Rec t2 u v
  RecCong2 : u1 > u2 -> Rec t u1 v > Rec t u2 v
  RecCong3 : v1 > v2 -> Rec t u v1 > Rec t u v2
  RecZero : Rec Zero u v > u
  RecSuc : Rec (Suc t) u v > App v (Rec t u v)

%name Reduction.(>) step

public export
data (>=) : Term ctx ty -> Term ctx ty -> Type where
  Lin : t >= t
  (:<) : t >= u -> u > v -> t >= v

%name Reduction.(>=) steps

export
(++) : t >= u -> u >= v -> t >= v
steps ++ [<] = steps
steps ++ steps' :< step = (steps ++ steps') :< step

export
AbsCong' : t >= u -> Abs t >= Abs u
AbsCong' [<] = [<]
AbsCong' (steps :< step) = AbsCong' steps :< AbsCong step

export
AppCong1' : t >= u -> App t v >= App u v
AppCong1' [<] = [<]
AppCong1' (steps :< step) = AppCong1' steps :< AppCong1 step

export
AppCong2' : u >= v -> App t u >= App t v
AppCong2' [<] = [<]
AppCong2' (steps :< step) = AppCong2' steps :< AppCong2 step

export
SucCong' : t >= u -> Suc t >= Suc u
SucCong' [<] = [<]
SucCong' (steps :< step) = SucCong' steps :< SucCong step

export
RecCong1' : t1 >= t2 -> Rec t1 u v >= Rec t2 u v
RecCong1' [<] = [<]
RecCong1' (steps :< step) = RecCong1' steps :< RecCong1 step

export
RecCong2' : u1 >= u2 -> Rec t u1 v >= Rec t u2 v
RecCong2' [<] = [<]
RecCong2' (steps :< step) = RecCong2' steps :< RecCong2 step

export
RecCong3' : v1 >= v2 -> Rec t u v1 >= Rec t u v2
RecCong3' [<] = [<]
RecCong3' (steps :< step) = RecCong3' steps :< RecCong3 step

-- Properties ------------------------------------------------------------------

lemma :
  (0 len : Len ctx) ->
  (t : Term (ctx :< ty) ty') ->
  (thin : ctx `Thins` ctx') ->
  (u : Term ctx ty) ->
  subst (wkn t (Keep thin)) (Base Thinning.id :< wkn u thin) = wkn (subst t (Base (id @{len}) :< u)) thin
lemma len t thin u = Calc $
  |~ subst (wkn t (Keep thin)) (Base id :< wkn u thin)
  ~~ subst t (restrict (Base id :< wkn u thin) (Keep thin))
    ...(substWkn t (Keep thin) (Base id :< wkn u thin))
  ~~ subst t (Base (id . thin) :< wkn u thin)
    ...(Refl)
  ~~ subst t (Base (thin . id) :< wkn u thin)
    ...(cong (subst t . (:< wkn u thin) . Base) $ trans (identityLeft thin) (sym $ identityRight thin))
  ~~ wkn (subst t (Base id :< u)) thin
    ...(sym $ wknSubst t (Base id :< u) thin)

export
wknStep : t > u -> wkn t thin > wkn u thin
wknStep (AbsCong step) = AbsCong (wknStep step)
wknStep (AppCong1 step) = AppCong1 (wknStep step)
wknStep (AppCong2 step) = AppCong2 (wknStep step)
wknStep (AppBeta len {t, u}) {thin} = rewrite sym $ lemma len t thin u in AppBeta _
wknStep (SucCong step) = SucCong (wknStep step)
wknStep (RecCong1 step) = RecCong1 (wknStep step)
wknStep (RecCong2 step) = RecCong2 (wknStep step)
wknStep (RecCong3 step) = RecCong3 (wknStep step)
wknStep RecZero = RecZero
wknStep RecSuc = RecSuc

export
wknSteps : t >= u -> wkn t thin >= wkn u thin
wknSteps [<] = [<]
wknSteps (steps :< step) = wknSteps steps :< wknStep step