summaryrefslogtreecommitdiff
path: root/src/Core/Declarative.idr
blob: 6a2c8bda25c20b07313f7344a2683912693b07a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
module Core.Declarative

import Core.Environment
import Core.Term
import Core.Term.Substitution
import Core.Term.Thinned
import Core.Thinning

-- Definition ------------------------------------------------------------------

data EnvWf : Env n -> Type
data TypeWf : Env n -> Term n -> Type
data TypeConv : Env n -> Term n -> Term n -> Type
data TermWf : Env n -> Term n -> Term n -> Type
data TermConv : Env n -> Term n -> Term n -> Term n -> Type

data EnvWf where
  Lin : EnvWf [<]
  (:<) : EnvWf env -> TypeWf env (expand a) -> EnvWf (env :< a)

data TypeWf where
  SetTyWf :
    EnvWf env ->
    ---
    TypeWf env Set
  PiTyWf :
    TypeWf env a ->
    TypeWf (env :< pure a) b ->
    ---
    TypeWf env (Pi a b)
  LiftWf :
    TermWf env a Set ->
    ---
    TypeWf env a

data TypeConv where
  ReflTy :
    TypeWf env a ->
    ---
    TypeConv env a a
  SymTy :
    TypeConv env a b ->
    ---
    TypeConv env b a
  TransTy :
    TypeConv env a b ->
    TypeConv env b c ->
    ---
    TypeConv env a c
  PiConv :
    TypeWf env a ->
    TypeConv env a c ->
    TypeConv (env :< pure a) b d ->
    ---
    TypeConv env (Pi a b) (Pi c d)
  LiftConv :
    TermConv env a b Set ->
    ---
    TypeConv env a b

data TermWf where
  PiTmWf :
    TermWf env a Set ->
    TermWf (env :< pure a) b Set ->
    ---
    TermWf env (Pi a b) Set
  VarWf :
    EnvWf env ->
    ---
    TermWf env (Var i) (expand $ index env i)
  AbsWf :
    TypeWf env a ->
    TermWf (env :< pure a) t b ->
    ---
    TermWf env (Abs t) (Pi a b)
  AppWf :
    TermWf env t (Pi a b) ->
    TermWf env u a ->
    ---
    TermWf env (App t u) (subst b $ Wkn (id _) :< pure u)
  ConvWf :
    TermWf env t a ->
    TypeConv env a b ->
    ---
    TermWf env t b

data TermConv where
  ReflTm :
    TermWf env t a ->
    ---
    TermConv env t t a
  SymTm :
    TermConv env t u a ->
    ---
    TermConv env u t a
  TransTm :
    TermConv env t u a ->
    TermConv env u v a ->
    ---
    TermConv env t v a
  AppConv :
    TermConv env f g (Pi a b) ->
    TermConv env t u a ->
    ---
    TermConv env (App f t) (App g u) (subst b $ Wkn (id _) :< pure t)
  PiTmConv :
    TypeWf env a ->
    TermConv env a c Set ->
    TermConv (env :< pure a) b d Set ->
    ---
    TermConv env (Pi a b) (Pi c d) Set
  PiEta :
    TypeWf env a ->
    TermWf env t (Pi a b) ->
    TermWf env u (Pi a b) ->
    TermConv (env :< pure a)
      (App (wkn t $ drop $ id _) (Var FZ))
      (App (wkn u $ drop $ id _) (Var FZ))
      b ->
    ---
    TermConv env t u (Pi a b)
  PiBeta :
    TypeWf env a ->
    TermWf (env :< pure a) t b ->
    TermWf env u a ->
    ---
    TermConv env
      (App (Abs t) u)
      (subst t $ Wkn (id _) :< pure u)
      (subst g $ Wkn (id _) :< pure u)
  ConvConv :
    TermConv env t u a ->
    TypeConv env a b ->
    ---
    TermConv env t u b