blob: 12096ace5048917ffd96ad390419fc86c01a4c61 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
module Core.Declarative
import Core.Environment
import Core.Term
import Core.Term.Substitution
import Core.Term.Thinned
import Core.Thinning
-- Definition ------------------------------------------------------------------
data EnvWf : Env n -> Type
data TypeWf : Env n -> Term n -> Type
data TypeConv : Env n -> Term n -> Term n -> Type
data TermWf : Env n -> Term n -> Term n -> Type
data TermConv : Env n -> Term n -> Term n -> Term n -> Type
data EnvWf where
Lin : EnvWf [<]
(:<) : EnvWf env -> TypeWf env (expand a) -> EnvWf (env :< a)
data TypeWf where
SetTyWf :
EnvWf env ->
---
TypeWf env Set
PiTyWf :
TypeWf env a ->
TypeWf (env :< pure a) b ->
---
TypeWf env (Pi a b)
LiftWf :
TermWf env a Set ->
---
TypeWf env a
data TypeConv where
ReflTy :
TypeWf env a ->
---
TypeConv env a a
SymTy :
TypeConv env a b ->
---
TypeConv env b a
TransTy :
TypeConv env a b ->
TypeConv env b c ->
---
TypeConv env a c
PiConv :
TypeWf env a ->
TypeConv env a c ->
TypeConv (env :< pure a) b d ->
---
TypeConv env (Pi a b) (Pi c d)
LiftConv :
TermConv env a b Set ->
---
TypeConv env a b
data TermWf where
PiTmWf :
TermWf env a Set ->
TermWf (env :< pure a) b Set ->
---
TermWf env (Pi a b) Set
VarWf :
EnvWf env ->
---
TermWf env (Var i) (expand $ index env i)
AbsWf :
TypeWf env a ->
TermWf (env :< pure a) t b ->
---
TermWf env (Abs t) (Pi a b)
AppWf :
TermWf env t (Pi a b) ->
TermWf env u a ->
---
TermWf env (App t u) (subst b $ Wkn (id _) :< pure u)
ConvWf :
TermWf env t a ->
TypeConv env a b ->
---
TermWf env t b
data TermConv where
ReflTm :
TermWf env t a ->
---
TermConv env t t a
SymTm :
TermConv env t u a ->
---
TermConv env u t a
TransTm :
TermConv env t u a ->
TermConv env u v a ->
---
TermConv env t v a
AppConv :
TermConv env f g (Pi a b) ->
TermConv env t u a ->
---
TermConv env (App f t) (App g u) (subst b $ Wkn (id _) :< pure t)
PiTmConv :
TypeWf env a ->
TermConv env a c Set ->
TermConv (env :< pure a) b d Set ->
---
TermConv env (Pi a b) (Pi c d) Set
PiEta :
TypeWf env a ->
TermWf env t (Pi a b) ->
TermWf env u (Pi a b) ->
TermConv (env :< pure a)
(App (wkn t $ drop $ id _) (Var FZ))
(App (wkn u $ drop $ id _) (Var FZ))
b ->
---
TermConv env t u (Pi a b)
PiBeta :
TypeWf env a ->
TermWf (env :< pure a) t b ->
TermWf env u a ->
---
TermConv env
(App (Abs t) u)
(subst t $ Wkn (id _) :< pure u)
(subst g $ Wkn (id _) :< pure u)
ConvConv :
TermConv env t u a ->
TypeConv env a b ->
---
TermConv env t u b
%name EnvWf envWf
%name TypeWf tyWf
%name TypeConv tyConv
%name TermWf tmWf
%name TermConv tmConv
-- Respects Environment Quotient -----------------------------------------------
export
envWfRespEq : EnvWf env1 -> env1 =~= env2 -> EnvWf env2
export
typeWfRespEq : TypeWf env1 a -> env1 =~= env2 -> TypeWf env2 a
export
typeConvRespEq : TypeConv env1 a b -> env1 =~= env2 -> TypeConv env2 a b
export
termWfRespEq : TermWf env1 t a -> env1 =~= env2 -> TermWf env2 t a
export
termConvRespEq : TermConv env1 t u a -> env1 =~= env2 -> TermConv env2 t u a
envWfRespEq envWf Refl = envWf
envWfRespEq (envWf :< tyWf) (prf :< prf') =
envWfRespEq envWf prf :<
rewrite sym prf' in typeWfRespEq tyWf prf
typeWfRespEq (SetTyWf envWf) prf = SetTyWf (envWfRespEq envWf prf)
typeWfRespEq (PiTyWf tyWf tyWf1) prf =
PiTyWf
(typeWfRespEq tyWf prf)
(typeWfRespEq tyWf1 $ prf :< Refl)
typeWfRespEq (LiftWf tmWf) prf = LiftWf (termWfRespEq tmWf prf)
typeConvRespEq (ReflTy tyWf) prf = ReflTy (typeWfRespEq tyWf prf)
typeConvRespEq (SymTy tyConv) prf = SymTy (typeConvRespEq tyConv prf)
typeConvRespEq (TransTy tyConv tyConv1) prf =
TransTy
(typeConvRespEq tyConv prf)
(typeConvRespEq tyConv1 prf)
typeConvRespEq (PiConv tyWf tyConv tyConv1) prf =
PiConv
(typeWfRespEq tyWf prf)
(typeConvRespEq tyConv prf)
(typeConvRespEq tyConv1 $ prf :< Refl)
typeConvRespEq (LiftConv tmConv) prf = LiftConv (termConvRespEq tmConv prf)
termWfRespEq (PiTmWf tmWf tmWf1) prf =
PiTmWf
(termWfRespEq tmWf prf)
(termWfRespEq tmWf1 $ prf :< Refl)
termWfRespEq (VarWf {i} envWf) prf =
rewrite indexCong prf i in
VarWf (envWfRespEq envWf prf)
termWfRespEq (AbsWf tyWf tmWf) prf =
AbsWf
(typeWfRespEq tyWf prf)
(termWfRespEq tmWf $ prf :< Refl)
termWfRespEq (AppWf tmWf tmWf1) prf =
AppWf
(termWfRespEq tmWf prf)
(termWfRespEq tmWf1 prf)
termWfRespEq (ConvWf tmWf tyConv) prf =
ConvWf
(termWfRespEq tmWf prf)
(typeConvRespEq tyConv prf)
termConvRespEq (ReflTm tmWf) prf = ReflTm (termWfRespEq tmWf prf)
termConvRespEq (SymTm tmConv) prf = SymTm (termConvRespEq tmConv prf)
termConvRespEq (TransTm tmConv tmConv1) prf =
TransTm
(termConvRespEq tmConv prf)
(termConvRespEq tmConv1 prf)
termConvRespEq (AppConv tmConv tmConv1) prf =
AppConv
(termConvRespEq tmConv prf)
(termConvRespEq tmConv1 prf)
termConvRespEq (PiTmConv tyWf tmConv tmConv1) prf =
PiTmConv
(typeWfRespEq tyWf prf)
(termConvRespEq tmConv prf)
(termConvRespEq tmConv1 $ prf :< Refl)
termConvRespEq (PiEta tyWf tmWf tmWf1 tmConv) prf =
PiEta
(typeWfRespEq tyWf prf)
(termWfRespEq tmWf prf)
(termWfRespEq tmWf1 prf)
(termConvRespEq tmConv $ prf :< Refl)
termConvRespEq (PiBeta tyWf tmWf tmWf1) prf =
PiBeta
(typeWfRespEq tyWf prf)
(termWfRespEq tmWf $ prf :< Refl)
(termWfRespEq tmWf1 prf)
termConvRespEq (ConvConv tmConv tyConv) prf =
ConvConv
(termConvRespEq tmConv prf)
(typeConvRespEq tyConv prf)
|