summaryrefslogtreecommitdiff
path: root/src/Core/Generic.idr
blob: 4563063fcdaa57dc2a6fb590036f79f55788ae4a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
module Core.Generic

import Core.Declarative
import Core.Environment
import Core.Reduction
import Core.Term
import Core.Term.NormalForm
import Core.Term.Substitution
import Core.Term.Thinned
import Core.Thinning

%prefix_record_projections off

-- Definition ------------------------------------------------------------------

public export
record Equality where
  constructor MkEquality
  TypeEq : forall n. Env n -> Term n -> Term n -> Type
  TermEq : forall n. Env n -> Term n -> Term n -> Term n -> Type
  NtrlEq : forall n. Env n -> NeutralTerm n -> NeutralTerm n -> Term n -> Type

public export
interface IsEq (0 eq : Equality) where
  -- Subsumption
  ntrlEqImpliesTermEq :
    {0 n, m : NeutralTerm k} ->
    eq.NtrlEq env n m a ->
    eq.TermEq env n.fst m.fst a
  termEqImpliesTypeEq : eq.TermEq {n} env a b Set -> eq.TypeEq env a b
  termEqImpliesConv : eq.TermEq {n} env t u a -> TermConv env t u a
  typeEqImpliesConv : eq.TypeEq {n} env a b -> TypeConv env a b

  -- Partial Equivalence
  ntrlSym : eq.NtrlEq {n = k} env n m a -> eq.NtrlEq env m n a
  ntrlTrans : eq.NtrlEq {n = k} env n1 n2 a -> eq.NtrlEq env n2 n3 a -> eq.NtrlEq env n1 n3 a
  termSym : eq.TermEq {n} env t u a -> eq.TermEq env u t a
  termTrans : eq.TermEq {n} env t u a -> eq.TermEq env u v a -> eq.TermEq env t v a
  typeSym : eq.TypeEq {n} env a b -> eq.TypeEq env b a
  typeTrans : eq.TypeEq {n} env a b -> eq.TypeEq env b c -> eq.TypeEq env a c

  -- Conversion
  ntrlConv : eq.NtrlEq {n = k} env n m a -> TypeConv env a b -> eq.NtrlEq env n m b
  termConv : eq.TermEq {n} env t u a -> TypeConv env a b -> eq.TermEq env t u b

  -- Weakening
  wknNtrl :
    eq.NtrlEq {n = j} env1 n m a ->
    ExtendsWf thin env2 env1 ->
    eq.NtrlEq {n = k} env2 (wkn n thin) (wkn m thin) (wkn a thin)
  wknTerm :
    eq.TermEq {n = m} env1 t u a ->
    ExtendsWf thin env2 env1 ->
    eq.TermEq {n} env2 (wkn t thin) (wkn u thin) (wkn a thin)
  wknType :
    eq.TypeEq {n = m} env1 a b ->
    ExtendsWf thin env2 env1 ->
    eq.TypeEq {n} env2 (wkn a thin) (wkn b thin)

  -- Weak Head Expansion
  expandTerm :
    TermReduce env t t' a ->
    TermReduce env u u' a ->
    Whnf t' ->
    Whnf u' ->
    eq.TermEq {n} env t' u' a ->
    eq.TermEq env t u a
  expandType :
    TypeReduce env a a' ->
    TypeReduce env b b' ->
    Whnf a' ->
    Whnf b' ->
    eq.TypeEq {n} env a' b' ->
    eq.TypeEq env a b

  -- Neutral Congruence
  ntrlVar :
    TermWf env (Var i) a ->
    ---
    eq.NtrlEq {n} env (Element (Var i) Var) (Element (Var i) Var) a
  ntrlApp :
    {0 n, m : NeutralTerm k} ->
    eq.NtrlEq env n m (Pi a b) ->
    eq.TermEq env t u a ->
    ---
    eq.NtrlEq env
      (Element (App n.fst t) (App n.snd))
      (Element (App m.fst u) (App m.snd))
      (subst1 b t)

  -- Term Congurence
  termPi :
    TypeWf env a ->
    eq.TermEq env a c Set ->
    eq.TermEq (env :< pure a) b d Set ->
    ---
    eq.TermEq {n} env (Pi a b) (Pi c d) Set
  termPiEta :
    TypeWf env a ->
    TermWf env t (Pi a b) ->
    TermWf env u (Pi a b) ->
    eq.TermEq (env :< pure a)
      (App (wkn t $ drop $ id _) (Var FZ))
      (App (wkn u $ drop $ id _) (Var FZ))
      b ->
    ---
    eq.TermEq {n} env t u (Pi a b)

  -- Type Congruence
  typeSet :
    EnvWf env ->
    ---
    eq.TypeEq {n} env Set Set
  typePi :
    TypeWf env a ->
    eq.TypeEq env a c ->
    eq.TypeEq (env :< pure a) b d ->
    ---
    eq.TypeEq {n} env (Pi a b) (Pi c d)

export
ntrlEqImpliesTypeEq : IsEq eq => eq.NtrlEq {n = k} env n m Set -> eq.TypeEq env n.fst m.fst
ntrlEqImpliesTypeEq = termEqImpliesTypeEq . ntrlEqImpliesTermEq

-- Instance 1 ------------------------------------------------------------------

public export
Judgemental : Equality
Judgemental = MkEquality TypeConv TermConv (\env, n, m, a => TermConv env n.fst m.fst a)

judgeWknNtrl :
  (Judgemental .NtrlEq) {n = j} env1 n m a ->
  ExtendsWf thin env2 env1 ->
  (Judgemental .NtrlEq) {n = k} env2 (wkn n thin) (wkn m thin) (wkn a thin)
judgeWknNtrl {n = Element t n, m = Element u m} = weakenTermConv

export
IsEq Judgemental where
  -- Subsumption
  ntrlEqImpliesTermEq = id
  termEqImpliesTypeEq = LiftConv
  termEqImpliesConv = id
  typeEqImpliesConv = id

  -- Partial Equivalence
  ntrlSym = SymTm
  ntrlTrans = TransTm
  termSym = SymTm
  termTrans = TransTm
  typeSym = SymTy
  typeTrans = TransTy

  -- Conversion
  ntrlConv = ConvConv
  termConv = ConvConv

  -- Weakening
  wknNtrl = judgeWknNtrl
  wknTerm = weakenTermConv
  wknType = weakenTypeConv

  -- Weak Head Expansion
  expandTerm = \steps1, steps2, n, m, eq =>
    TransTm (termRedImpliesConv steps1) $
    TransTm eq $
    SymTm (termRedImpliesConv steps2)
  expandType = \steps1, steps2, n, m, eq =>
    TransTy (typeRedImpliesConv steps1) $
    TransTy eq $
    SymTy (typeRedImpliesConv steps2)

  -- Neutral Congruence
  ntrlVar = ReflTm
  ntrlApp = AppConv

  -- Term Congurence
  termPi = PiTmConv
  termPiEta = PiEta

  -- Type Congruence
  typeSet = ReflTy . SetTyWf
  typePi = PiConv