1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
|
module Core.Reducible
import Control.WellFounded
import Core.Declarative
import Core.Environment
import Core.Generic
import Core.Reduction
import Core.Term
import Core.Term.Substitution
import Core.Term.Thinned
import Core.Term.NormalForm
import Core.Thinning
%prefix_record_projections off
data Level = Small | Large
%name Level l
export
Sized Level where
size Small = 0
size Large = 1
public export
record LogicalRelation (eq : Equality) where
constructor MkLogRel
0 TypeRed : forall n. Env n -> Term n -> Type
0 TypeEq : forall n. (env : Env n) -> (a, b : Term n) -> TypeRed {n} env a -> Type
0 TermRed : forall n. (env : Env n) -> (t, a : Term n) -> TypeRed {n} env a -> Type
0 TermEq : forall n. (env : Env n) -> (t, u, a : Term n) -> TypeRed {n} env a -> Type
public export
data TypeRed :
(eq : Equality) ->
(l : Level) ->
(rec : (l' : Level) -> Smaller l' l -> LogicalRelation eq) ->
(env : Env n) ->
(a : Term n) ->
Type
public export
data TypeEq :
(eq : Equality) ->
(l : Level) ->
(rec : (l' : Level) -> Smaller l' l -> LogicalRelation eq) ->
(env : Env n) ->
(a, b : Term n) ->
TypeRed eq l rec {n} env a ->
Type
public export
data TermRed :
(eq : Equality) ->
(l : Level) ->
(rec : (l' : Level) -> Smaller l' l -> LogicalRelation eq) ->
(env : Env n) ->
(t, a : Term n) ->
TypeRed eq l rec {n} env a ->
Type
public export
data TermEq :
(eq : Equality) ->
(l : Level) ->
(rec : (l' : Level) -> Smaller l' l -> LogicalRelation eq) ->
(env : Env n) ->
(t, u, a : Term n) ->
TypeRed eq l rec {n} env a ->
Type
-- Neutrals
public export
record NeutralTyRed
(eq : Equality)
(l : Level)
(rec : (l' : Level) -> Smaller l' l -> LogicalRelation eq)
(env : Env n)
(a : Term n)
where
constructor MkNtrlTyRed
{0 a' : Term n}
tyWf : TypeWf env a
steps : TypeReduce env a a'
tyWf' : TypeWf env a'
0 ntrl : Neutral a'
prf : eq.NtrlEq env (Element a' ntrl) (Element a' ntrl) Set
public export
record NeutralTyEq
(eq : Equality)
(l : Level)
(rec : (l' : Level) -> Smaller l' l -> LogicalRelation eq)
(env : Env n)
(a, b : Term n)
(red : NeutralTyRed eq l rec {n} env a)
where
constructor MkNtrlTyEq
{0 b' : Term n}
tyWf : TypeWf env b
steps : TypeReduce env b b'
tyWf' : TypeWf env b'
0 ntrl : Neutral b'
prf : eq.NtrlEq env (Element red.a' red.ntrl) (Element b' ntrl) Set
public export
record NeutralTmRed
(eq : Equality)
(l : Level)
(rec : (l' : Level) -> Smaller l' l -> LogicalRelation eq)
(env : Env n)
(t, a : Term n)
(red : NeutralTyRed eq l rec {n} env a)
where
constructor MkNtrlTmRed
{0 t' : Term n}
tmWf : TermWf env t a
steps : TermReduce env t t' a
tmWf' : TermWf env t' a
0 ntrl : Neutral t'
prf : eq.NtrlEq env (Element t' ntrl) (Element t' ntrl) a
public export
record NeutralTmEq
(eq : Equality)
(l : Level)
(rec : (l' : Level) -> Smaller l' l -> LogicalRelation eq)
(env : Env n)
(t, u, a : Term n)
(red : NeutralTyRed eq l rec {n} env a)
where
constructor MkNtrlTmEq
{0 t', u' : Term n}
tmWf1 : TermWf env t a
tmWf2 : TermWf env u a
steps1 : TermReduce env t t' a
steps2 : TermReduce env u u' a
tmWf1' : TermWf env t' a
tmWf2' : TermWf env u' a
0 ntrl1 : Neutral t'
0 ntrl2 : Neutral u'
prf : eq.NtrlEq env (Element t' ntrl1) (Element u' ntrl2) a
-- Set
public export
record SetTyRed
(eq : Equality)
(l : Level)
(rec : (l' : Level) -> Smaller l' l -> LogicalRelation eq)
(env : Env n)
(a : Term n)
where
constructor MkSetTyRed
tyWf : TypeWf env a
steps : TypeReduce env a Set
tyWf' : TypeWf env Set
prf : Smaller Small l
public export
record SetTyEq
(eq : Equality)
(l : Level)
(rec : (l' : Level) -> Smaller l' l -> LogicalRelation eq)
(env : Env n)
(a, b : Term n)
(red : SetTyRed eq l rec {n} env a)
where
constructor MkSetTyEq
tyWf : TypeWf env b
steps : TypeReduce env b Set
tyWf' : TypeWf env Set
public export
record SetTmRed
(eq : Equality)
(l : Level)
(rec : (l' : Level) -> Smaller l' l -> LogicalRelation eq)
(env : Env n)
(t, a : Term n)
(red : SetTyRed eq l rec {n} env a)
where
constructor MkSetTmRed
{0 t' : Term n}
tmWf : TermWf env t a
steps : TypeReduce env t t'
tyWf' : TermWf env t' a
0 whnf : Whnf t'
prf : eq.TermEq env t' t' a
tyRed : (rec Small red.prf).TypeRed env t
public export
record SetTmEq
(eq : Equality)
(l : Level)
(rec : (l' : Level) -> Smaller l' l -> LogicalRelation eq)
(env : Env n)
(t, u, a : Term n)
(red : SetTyRed eq l rec {n} env a)
where
constructor MkSetTmEq
{0 t', u' : Term n}
tmWf1 : TermWf env t a
tmWf2 : TermWf env u a
steps1 : TypeReduce env t t'
steps2 : TypeReduce env u u'
tyWf1' : TermWf env t' Set
tyWf2' : TermWf env u' Set
0 whnf1 : Whnf t'
0 whnf2 : Whnf u'
prf : eq.TermEq env t' u' a
tyRed1 : (rec Small red.prf).TypeRed env t
tyRed2 : (rec Small red.prf).TypeRed env u
tyEq : (rec Small red.prf).TypeEq env t u tyRed1
-- Pi
public export
record PiTyRed
(eq : Equality)
(l : Level)
(rec : (l' : Level) -> Smaller l' l -> LogicalRelation eq)
(env : Env n)
(a : Term n)
where
constructor MkPiTyRed
{0 f : Term n}
{0 g : Term (S n)}
tyWf : TypeWf env a
steps : TypeReduce env a (Pi f g)
tyWf' : TypeWf env (Pi f g)
domWf : TypeWf env f
codWf : TypeWf (env :< pure f) g
domRed :
forall m.
{0 thin : n `Thins` m} ->
forall env'.
ExtendsWf thin env' env ->
TypeRed eq l rec env' (wkn f thin)
codRed :
forall m.
{0 thin : n `Thins` m} ->
forall env'.
(thinWf : ExtendsWf thin env' env) ->
forall t.
TermRed eq l rec env' t (wkn f thin) (domRed thinWf) ->
TypeRed eq l rec env' (subst g (Wkn thin :< pure t))
codEq :
forall m.
{0 thin : n `Thins` m} ->
forall env'.
(thinWf : ExtendsWf thin env' env) ->
forall t, u.
(red : TermRed eq l rec env' t (wkn f thin) (domRed thinWf)) ->
TermRed eq l rec env' u (wkn f thin) (domRed thinWf) ->
TermEq eq l rec env' t u (wkn f thin) (domRed thinWf) ->
TypeEq eq l rec env'
(subst g (Wkn thin :< pure t))
(subst g (Wkn thin :< pure u))
(codRed thinWf red)
public export
record PiTyEq
(eq : Equality)
(l : Level)
(rec : (l' : Level) -> Smaller l' l -> LogicalRelation eq)
(env : Env n)
(a, b : Term n)
(red : PiTyRed eq l rec env a)
where
constructor MkPiTyEq
{0 f : Term n}
{0 g : Term (S n)}
tyWf : TypeWf env b
steps : TypeReduce env b (Pi f g)
tyWf' : TypeWf env (Pi f g)
prf : eq.TypeEq env (Pi red.f red.g) (Pi f g)
domEq :
forall m.
{0 thin : n `Thins` m} ->
forall env'.
(thinWf : ExtendsWf thin env' env) ->
TypeEq eq l rec env' (wkn red.f thin) (wkn f thin) (red.domRed thinWf)
codEq :
forall m.
{0 thin : n `Thins` m} ->
forall env'.
(thinWf : ExtendsWf thin env' env) ->
forall t.
(red' : TermRed eq l rec env' t (wkn red.f thin) (red.domRed thinWf)) ->
TypeEq eq l rec env'
(subst red.g (Wkn thin :< pure t))
(subst g (Wkn thin :< pure t))
(red.codRed thinWf red')
public export
record PiTmRed
(eq : Equality)
(l : Level)
(rec : (l' : Level) -> Smaller l' l -> LogicalRelation eq)
(env : Env n)
(t, a : Term n)
(red : PiTyRed eq l rec env a)
where
constructor MkPiTmRed
{0 t' : Term n}
tmWf : TermWf env t a
steps : TermReduce env t t' a
tmWf' : TermWf env t' a
0 whnf : Whnf t'
prf : eq.TermEq env t' t' a
codRed :
forall m.
{0 thin : n `Thins` m} ->
forall env'.
(thinWf : ExtendsWf thin env' env) ->
forall u.
(red' : TermRed eq l rec env' u (wkn red.f thin) (red.domRed thinWf)) ->
TermRed eq l rec env'
(App (wkn t' thin) u)
(subst red.g (Wkn thin :< pure u))
(red.codRed thinWf red')
codEq :
forall m.
{0 thin : n `Thins` m} ->
forall env'.
(thinWf : ExtendsWf thin env' env) ->
forall u, v.
(red' : TermRed eq l rec env' u (wkn red.f thin) (red.domRed thinWf)) ->
TermRed eq l rec env' v (wkn red.f thin) (red.domRed thinWf) ->
TermEq eq l rec env' u v (wkn red.f thin) (red.domRed thinWf) ->
TermEq eq l rec env'
(App (wkn t' thin) u)
(App (wkn t' thin) v)
(subst red.g (Wkn thin :< pure u))
(red.codRed thinWf red')
public export
record PiTmEq
(eq : Equality)
(l : Level)
(rec : (l' : Level) -> Smaller l' l -> LogicalRelation eq)
(env : Env n)
(t, u, a : Term n)
(red : PiTyRed eq l rec env a)
where
constructor MkPiTmEq
{0 t', u' : Term n}
tmWf1 : TermWf env t a
tmWf2 : TermWf env u a
steps1 : TermReduce env t t' a
steps2 : TermReduce env u u' a
tmWf1' : TermWf env t' a
tmWf2' : TermWf env u' a
0 whnf1 : Whnf t'
0 whnf2 : Whnf u'
prf : eq.TermEq env t' u' a
red1 : PiTmRed eq l rec env t a red
red2 : PiTmRed eq l rec env u a red
codEq :
forall m.
{0 thin : n `Thins` m} ->
forall env'.
(thinWf : ExtendsWf thin env' env) ->
forall v.
(red' : TermRed eq l rec env' v (wkn red.f thin) (red.domRed thinWf)) ->
TermEq eq l rec env'
(App (wkn t' thin) v)
(App (wkn u' thin) v)
(subst red.g (Wkn thin :< pure v))
(red.codRed thinWf red')
-- Putting it all together
data TypeRed where
RedNtrlTy : NeutralTyRed eq l rec env a -> TypeRed eq l rec env a
RedSetTy : SetTyRed eq l rec env a -> TypeRed eq l rec env a
RedPiTy : PiTyRed eq l rec env a -> TypeRed eq l rec env a
data TypeEq where
EqNtrlTy : NeutralTyEq eq l rec env a b red -> TypeEq eq l rec env a b (RedNtrlTy red)
EqSetTy : SetTyEq eq l rec env a b red -> TypeEq eq l rec env a b (RedSetTy red)
EqPiTy : PiTyEq eq l rec env a b red -> TypeEq eq l rec env a b (RedPiTy red)
data TermRed where
RedNtrlTm : NeutralTmRed eq l rec env t a red -> TermRed eq l rec env t a (RedNtrlTy red)
RedSetTm : SetTmRed eq l rec env t a red -> TermRed eq l rec env t a (RedSetTy red)
RedPiTm : PiTmRed eq l rec env t a red -> TermRed eq l rec env t a (RedPiTy red)
data TermEq where
EqNtrlTm : NeutralTmEq eq l rec env t u a red -> TermEq eq l rec env t u a (RedNtrlTy red)
EqSetTm : SetTmEq eq l rec env t u a red -> TermEq eq l rec env t u a (RedSetTy red)
EqPiTm : PiTmEq eq l rec env t u a red -> TermEq eq l rec env t u a (RedPiTy red)
-- Induction -------------------------------------------------------------------
public export
levelAccRecurse : (sizeL : Nat) -> (l' : Level) -> (size l' `LT` sizeL) -> SizeAccessible l'
levelAccRecurse (S l) l' (LTESucc prf) =
Access (\l'', prf' => levelAccRecurse l l'' $ transitive prf' prf)
public export
levelAccessible : (l : Level) -> SizeAccessible l
levelAccessible l = Access (levelAccRecurse $ size l)
public export
levelIndHelper :
{0 p : Level -> Type} ->
(step : (l : Level) -> ((l' : Level) -> Smaller l' l -> p l') -> p l) ->
(l : Level) ->
(0 acc : SizeAccessible l) ->
p l
levelIndHelper step l (Access rec) = step l (\l', prf => levelIndHelper step l' $ rec l' prf)
public export
levelInd :
{0 p : Level -> Type} ->
(step : (l : Level) -> ((l' : Level) -> Smaller l' l -> p l') -> p l) ->
(l : Level) ->
p l
levelInd step l = levelIndHelper step l (levelAccessible l)
public export
LogRel : (eq : Equality) -> Level -> LogicalRelation eq
LogRel eq =
levelInd $ \l, rec =>
MkLogRel
(TypeRed eq l rec)
(TypeEq eq l rec)
(TermRed eq l rec)
(TermEq eq l rec)
|