diff options
author | Greg Brown <greg.brown@cl.cam.ac.uk> | 2022-01-07 13:36:42 +0000 |
---|---|---|
committer | Greg Brown <greg.brown@cl.cam.ac.uk> | 2022-01-07 13:36:42 +0000 |
commit | 1f718c9dbe48934edf115aef285c5aeaa2dfb20d (patch) | |
tree | ea48b7503bc2e7a7b2e431816a2d3adb2cbd1de4 /src/Helium/Algebra/Consequences/Setoid.agda | |
parent | d84082ef65e311626e73af8e860723dd9d1e6b4f (diff) |
Add some required algebraic types.
Diffstat (limited to 'src/Helium/Algebra/Consequences/Setoid.agda')
-rw-r--r-- | src/Helium/Algebra/Consequences/Setoid.agda | 48 |
1 files changed, 48 insertions, 0 deletions
diff --git a/src/Helium/Algebra/Consequences/Setoid.agda b/src/Helium/Algebra/Consequences/Setoid.agda new file mode 100644 index 0000000..ab8d41e --- /dev/null +++ b/src/Helium/Algebra/Consequences/Setoid.agda @@ -0,0 +1,48 @@ +------------------------------------------------------------------------ +-- Agda Helium +-- +-- Relations between properties of functions when the underlying relation is a setoid +------------------------------------------------------------------------ + +{-# OPTIONS --without-K --safe #-} + +open import Relation.Binary using (Setoid) + +module Helium.Algebra.Consequences.Setoid {a ℓ} (S : Setoid a ℓ) where + +open Setoid S renaming (Carrier to A) +open import Algebra.Core +open import Algebra.Definitions _≈_ +open import Data.Product using (_,_) +open import Helium.Algebra.Core +open import Helium.Algebra.Definitions _≈_ +open import Relation.Nullary using (¬_) + +open import Relation.Binary.Reasoning.Setoid S + +module _ {0# 1#} {_∙_ : Op₂ A} {_⁻¹ : AlmostOp₁ _≈_ 0#} (cong : Congruent₂ _∙_) where + assoc+id+invʳ⇒invˡ-unique : Associative _∙_ → + Identity 1# _∙_ → + AlmostRightInverse 1# _⁻¹ _∙_ → + ∀ x {y} (y≉0 : ¬ y ≈ 0#) → + (x ∙ y) ≈ 1# → x ≈ (y≉0 ⁻¹) + assoc+id+invʳ⇒invˡ-unique assoc (idˡ , idʳ) invʳ x {y} y≉0 eq = begin + x ≈˘⟨ idʳ x ⟩ + x ∙ 1# ≈˘⟨ cong refl (invʳ y≉0) ⟩ + x ∙ (y ∙ (y≉0 ⁻¹)) ≈˘⟨ assoc x y (y≉0 ⁻¹) ⟩ + (x ∙ y) ∙ (y≉0 ⁻¹) ≈⟨ cong eq refl ⟩ + 1# ∙ (y≉0 ⁻¹) ≈⟨ idˡ (y≉0 ⁻¹) ⟩ + y≉0 ⁻¹ ∎ + + assoc+id+invˡ⇒invʳ-unique : Associative _∙_ → + Identity 1# _∙_ → + AlmostLeftInverse 1# _⁻¹ _∙_ → + ∀ {x} (x≉0 : ¬ x ≈ 0#) y → + (x ∙ y) ≈ 1# → y ≈ (x≉0 ⁻¹) + assoc+id+invˡ⇒invʳ-unique assoc (idˡ , idʳ) invˡ {x} x≉0 y eq = begin + y ≈˘⟨ idˡ y ⟩ + 1# ∙ y ≈˘⟨ cong (invˡ x≉0) refl ⟩ + ((x≉0 ⁻¹) ∙ x) ∙ y ≈⟨ assoc (x≉0 ⁻¹) x y ⟩ + (x≉0 ⁻¹) ∙ (x ∙ y) ≈⟨ cong refl eq ⟩ + (x≉0 ⁻¹) ∙ 1# ≈⟨ idʳ (x≉0 ⁻¹) ⟩ + x≉0 ⁻¹ ∎ |