diff options
author | Greg Brown <greg.brown@cl.cam.ac.uk> | 2022-01-08 17:38:20 +0000 |
---|---|---|
committer | Greg Brown <greg.brown@cl.cam.ac.uk> | 2022-01-08 17:38:20 +0000 |
commit | d5f3e7bc675a07bd04c746512c6f1b0b1250b55e (patch) | |
tree | 33dc006249d4be1722ed98c84539360df3a9c982 /src/Helium/Data | |
parent | affce23167fcbd58265c4faef5dbbb92401398bd (diff) |
Make RawPseudocode contain its own bundles.
Diffstat (limited to 'src/Helium/Data')
-rw-r--r-- | src/Helium/Data/Pseudocode.agda | 283 |
1 files changed, 141 insertions, 142 deletions
diff --git a/src/Helium/Data/Pseudocode.agda b/src/Helium/Data/Pseudocode.agda index f683193..146dbf9 100644 --- a/src/Helium/Data/Pseudocode.agda +++ b/src/Helium/Data/Pseudocode.agda @@ -8,180 +8,179 @@ module Helium.Data.Pseudocode where +open import Algebra.Bundles using (RawRing) open import Algebra.Core -open import Data.Bool using (Bool; if_then_else_) -open import Data.Fin hiding (_+_; cast) -import Data.Fin.Properties as Finₚ -open import Data.Nat using (ℕ; zero; suc; _+_; _^_) -import Data.Vec as Vec +import Algebra.Definitions.RawSemiring as RS +open import Data.Bool.Base using (Bool; if_then_else_) +open import Data.Fin.Base as Fin hiding (cast) +import Data.Fin.Properties as Fₚ +import Data.Fin.Induction as Induction +open import Data.Nat.Base using (ℕ; zero; suc) +open import Data.Vec.Functional +open import Data.Vec.Functional.Relation.Binary.Pointwise using (Pointwise) +import Data.Vec.Functional.Relation.Binary.Pointwise.Properties as Pwₚ +open import Function using (_$_; _∘′_; id) +open import Helium.Algebra.Bundles using (RawField; RawBooleanAlgebra) open import Level using (_⊔_) renaming (suc to ℓsuc) -open import Relation.Binary using (REL; Rel; Symmetric; Transitive; Decidable) -open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym) -open import Relation.Nullary using (Dec; does) -open import Relation.Nullary.Decidable - -private - map-False : ∀ {p q} {P : Set p} {Q : Set q} {P? : Dec P} {Q? : Dec Q} → (P → Q) → False Q? → False P? - map-False ⇒ f = fromWitnessFalse (λ x → toWitnessFalse f (⇒ x)) +open import Relation.Binary.Core using (Rel) +open import Relation.Binary.Definitions using (Decidable) +open import Relation.Binary.PropositionalEquality as P using (_≡_) +open import Relation.Nullary using (does) +open import Relation.Nullary.Decidable.Core using (False; toWitnessFalse) record RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃ : Set (ℓsuc (b₁ ⊔ b₂ ⊔ i₁ ⊔ i₂ ⊔ i₃ ⊔ r₁ ⊔ r₂ ⊔ r₃)) where - infix 9 _^ᶻ_ _^ʳ_ - infix 8 _⁻¹ - infixr 7 _*ᶻ_ _*ʳ_ - infix 6 -ᶻ_ -ʳ_ - infixr 5 _+ᶻ_ _+ʳ_ _∶_ - infix 4 _≈ᵇ_ _≟ᵇ_ _≈ᶻ_ _≟ᶻ_ _<ᶻ_ _<?ᶻ_ _≈ʳ_ _≟ʳ_ _<ʳ_ _<?ʳ_ + infix 6 _-ᶻ_ + infix 4 _≟ᵇ_ _≟ᶻ_ _<ᶻ_ _<ᶻ?_ _≟ʳ_ _<ʳ_ _<ʳ?_ field - -- Types - Bits : ℕ → Set b₁ - ℤ : Set i₁ - ℝ : Set r₁ + bitRawBooleanAlgebra : RawBooleanAlgebra b₁ b₂ + integerRawRing : RawRing i₁ i₂ + realRawField : RawField r₁ r₂ + + open RawBooleanAlgebra bitRawBooleanAlgebra public + using () + renaming (Carrier to Bit; _≈_ to _≈ᵇ₁_; _≉_ to _≉ᵇ₁_; ⊤ to 1𝔹; ⊥ to 0𝔹) + + module bitsRawBooleanAlgebra {n} = RawBooleanAlgebra record + { _≈_ = Pointwise (RawBooleanAlgebra._≈_ bitRawBooleanAlgebra) {n} + ; _∨_ = zipWith (RawBooleanAlgebra._∨_ bitRawBooleanAlgebra) + ; _∧_ = zipWith (RawBooleanAlgebra._∧_ bitRawBooleanAlgebra) + ; ¬_ = map (RawBooleanAlgebra.¬_ bitRawBooleanAlgebra) + ; ⊤ = replicate (RawBooleanAlgebra.⊤ bitRawBooleanAlgebra) + ; ⊥ = replicate (RawBooleanAlgebra.⊥ bitRawBooleanAlgebra) + } + + open bitsRawBooleanAlgebra public + hiding (Carrier) + renaming (_≈_ to _≈ᵇ_; _≉_ to _≉ᵇ_; ⊤ to ones; ⊥ to zeros) + + Bits = λ n → bitsRawBooleanAlgebra.Carrier {n} + + open RawRing integerRawRing public + renaming + ( Carrier to ℤ; _≈_ to _≈ᶻ_; _≉_ to _≉ᶻ_ + ; _+_ to _+ᶻ_; _*_ to _*ᶻ_; -_ to -ᶻ_; 0# to 0ℤ; 1# to 1ℤ + ; rawSemiring to integerRawSemiring + ; +-rawMagma to +ᶻ-rawMagma; +-rawMonoid to +ᶻ-rawMonoid + ; *-rawMagma to *ᶻ-rawMagma; *-rawMonoid to *ᶻ-rawMonoid + ; +-rawGroup to +ᶻ-rawGroup + ) + + _-ᶻ_ : Op₂ ℤ + x -ᶻ y = x +ᶻ -ᶻ y + + open RS integerRawSemiring public using () + renaming + ( _×_ to _×ᶻ_; _×′_ to _×′ᶻ_; sum to sumᶻ + ; _^_ to _^ᶻ_; _^′_ to _^′ᶻ_; product to productᶻ + ) + + open RawField realRawField public + renaming + ( Carrier to ℝ; _≈_ to _≈ʳ_; _≉_ to _≉ʳ_ + ; _+_ to _+ʳ_; _*_ to _*ʳ_; -_ to -ʳ_; 0# to 0ℝ; 1# to 1ℝ; _-_ to _-ʳ_ + ; rawSemiring to realRawSemiring; rawRing to realRawRing + ; +-rawMagma to +ʳ-rawMagma; +-rawMonoid to +ʳ-rawMonoid + ; *-rawMagma to *ʳ-rawMagma; *-rawMonoid to *ʳ-rawMonoid + ; +-rawGroup to +ʳ-rawGroup; *-rawAlmostGroup to *ʳ-rawAlmostGroup + ) + + open RS realRawSemiring public using () + renaming + ( _×_ to _×ʳ_; _×′_ to _×′ʳ_; sum to sumʳ + ; _^_ to _^ʳ_; _^′_ to _^′ʳ_; product to productʳ + ) field - -- Relations - _≈ᵇ_ : ∀ {m n} → REL (Bits m) (Bits n) b₂ - _≟ᵇ_ : ∀ {m n} → Decidable (_≈ᵇ_ {m} {n}) - _≈ᶻ_ : Rel ℤ i₂ - _≟ᶻ_ : Decidable _≈ᶻ_ - _<ᶻ_ : Rel ℤ i₃ - _<?ᶻ_ : Decidable _<ᶻ_ - _≈ʳ_ : Rel ℝ r₂ - _≟ʳ_ : Decidable _≈ʳ_ - _<ʳ_ : Rel ℝ r₃ - _<?ʳ_ : Decidable _<ʳ_ - - -- Constants - [] : Bits 0 - 0b : Bits 1 - 1b : Bits 1 - 0ℤ : ℤ - 1ℤ : ℤ - 0ℝ : ℝ - 1ℝ : ℝ + _≟ᶻ_ : Decidable _≈ᶻ_ + _<ᶻ_ : Rel ℤ i₃ + _<ᶻ?_ : Decidable _<ᶻ_ - field - -- Bitstring operations - ofFin : ∀ {n} → Fin (2 ^ n) → Bits n - cast : ∀ {m n} → .(eq : m ≡ n) → Bits m → Bits n - not : ∀ {n} → Op₁ (Bits n) - _and_ : ∀ {n} → Op₂ (Bits n) - _or_ : ∀ {n} → Op₂ (Bits n) - _∶_ : ∀ {m n} → Bits m → Bits n → Bits (m + n) - sliceᵇ : ∀ {n} (i : Fin (suc n)) j → Bits n → Bits (toℕ (i - j)) - updateᵇ : ∀ {n} (i : Fin (suc n)) j → Bits (toℕ (i - j)) → Op₁ (Bits n) + _≟ʳ_ : Decidable _≈ʳ_ + _<ʳ_ : Rel ℝ r₃ + _<ʳ?_ : Decidable _<ʳ_ + + _≟ᵇ₁_ : Decidable _≈ᵇ₁_ + + _≟ᵇ_ : ∀ {n} → Decidable (_≈ᵇ_ {n}) + _≟ᵇ_ = Pwₚ.decidable _≟ᵇ₁_ field - -- Arithmetic operations float : ℤ → ℝ round : ℝ → ℤ - _+ᶻ_ : Op₂ ℤ - _+ʳ_ : Op₂ ℝ - _*ᶻ_ : Op₂ ℤ - _*ʳ_ : Op₂ ℝ - -ᶻ_ : Op₁ ℤ - -ʳ_ : Op₁ ℝ - _⁻¹ : ∀ (y : ℝ) → .{False (y ≟ʳ 0ℝ)} → ℝ - -- Convenience operations + cast : ∀ {m n} → .(eq : m ≡ n) → Bits m → Bits n + cast eq x i = x $ Fin.cast (P.sym eq) i - zeros : ∀ {n} → Bits n - zeros {zero} = [] - zeros {suc n} = 0b ∶ zeros + 2ℤ : ℤ + 2ℤ = 2 ×′ᶻ 1ℤ - ones : ∀ {n} → Bits n - ones {zero} = [] - ones {suc n} = 1b ∶ ones + getᵇ : ∀ {n} → Fin n → Bits n → Bit + getᵇ i x = x (opposite i) - _eor_ : ∀ {n} → Op₂ (Bits n) - x eor y = (x or y) and not (x and y) + setᵇ : ∀ {n} → Fin n → Bit → Op₁ (Bits n) + setᵇ i b = updateAt (opposite i) λ _ → b - getᵇ : ∀ {n} → Fin n → Bits n → Bits 1 - getᵇ i x = cast (eq i) (sliceᵇ (suc i) (inject₁ (strengthen i)) x) - where - eq : ∀ {n} (i : Fin n) → toℕ (suc i - inject₁ (strengthen i)) ≡ 1 - eq zero = refl - eq (suc i) = eq i + sliceᵇ : ∀ {n} (i : Fin (suc n)) j → Bits n → Bits (toℕ (i - j)) + sliceᵇ zero zero x = [] + sliceᵇ {suc n} (suc i) zero x = getᵇ i x ∷ sliceᵇ i zero (tail x) + sliceᵇ {suc n} (suc i) (suc j) x = sliceᵇ i j (tail x) - setᵇ : ∀ {n} → Fin n → Bits 1 → Op₁ (Bits n) - setᵇ i y = updateᵇ (suc i) (inject₁ (strengthen i)) (cast (sym (eq i)) y) + updateᵇ : ∀ {n} (i : Fin (suc n)) j → Bits (toℕ (i - j)) → Op₁ (Bits n) + updateᵇ {n} = Induction.<-weakInduction P (λ _ _ → id) helper where - eq : ∀ {n} (i : Fin n) → toℕ (suc i - inject₁ (strengthen i)) ≡ 1 - eq zero = refl - eq (suc i) = eq i + P : Fin (suc n) → Set b₁ + P i = ∀ j → Bits (toℕ (i - j)) → Op₁ (Bits n) - hasBit : ∀ {n} → Fin n → Bits n → Bool - hasBit i x = does (getᵇ i x ≟ᵇ 1b) + eq : ∀ {n} {i : Fin n} → toℕ i ≡ toℕ (inject₁ i) + eq = P.sym $ Fₚ.toℕ-inject₁ _ - -- Stray constant cannot live with the others, because + is not defined at that point. - 2ℤ : ℤ - 2ℤ = 1ℤ +ᶻ 1ℤ - - _^ᶻ_ : ℤ → ℕ → ℤ - x ^ᶻ zero = 1ℤ - x ^ᶻ suc y = x *ᶻ x ^ᶻ y - - _^ʳ_ : ℝ → ℕ → ℝ - x ^ʳ zero = 1ℝ - x ^ʳ suc y = x *ʳ x ^ʳ y + eq′ : ∀ {n} {i : Fin n} j → toℕ (i - j) ≡ toℕ (inject₁ i - Fin.cast eq j) + eq′ zero = eq + eq′ {i = suc _} (suc j) = eq′ j - _<<_ : ℤ → ℕ → ℤ - x << n = x *ᶻ 2ℤ ^ᶻ n - - uint : ∀ {n} → Bits n → ℤ - uint x = Vec.foldr (λ _ → ℤ) _+ᶻ_ 0ℤ (Vec.tabulate (λ i → if hasBit i x then 1ℤ << toℕ i else 0ℤ)) + helper : ∀ i → P (inject₁ i) → P (suc i) + helper i rec zero y = rec zero (cast eq (tail y)) ∘′ setᵇ i (y zero) + helper i rec (suc j) y = rec (Fin.cast eq j) (cast (eq′ j) y) - sint : ∀ {n} → Bits n → ℤ - sint {zero} x = 0ℤ - sint {suc n} x = uint x +ᶻ (if hasBit (fromℕ n) x then -ᶻ 1ℤ << suc n else 0ℤ) + hasBit : ∀ {n} → Fin n → Bits n → Bool + hasBit i x = does (getᵇ i x ≟ᵇ₁ 1𝔹) - module divmod - (≈ᶻ-trans : Transitive _≈ᶻ_) - (round∘float : ∀ x → x ≈ᶻ round (float x)) - (round-cong : ∀ {x y} → x ≈ʳ y → round x ≈ᶻ round y) - (0#-homo-round : round 0ℝ ≈ᶻ 0ℤ) - where + infixl 7 _div_ _mod_ - infix 7 _div_ _mod_ + _div_ : ∀ (x y : ℤ) → {y≉0 : False (float y ≟ʳ 0ℝ)} → ℤ + (x div y) {y≉0} = round (float x *ʳ toWitnessFalse y≉0 ⁻¹) - _div_ : ∀ (x y : ℤ) → .{≢0 : False (y ≟ᶻ 0ℤ)} → ℤ - (x div y) {≢0} = - let f = (λ y≈0 → ≈ᶻ-trans (round∘float y) (≈ᶻ-trans (round-cong y≈0) 0#-homo-round)) in - round (float x *ʳ (float y ⁻¹) {map-False f ≢0}) + _mod_ : ∀ (x y : ℤ) → {y≉0 : False (float y ≟ʳ 0ℝ)} → ℤ + (x mod y) {y≉0} = x -ᶻ y *ᶻ (x div y) {y≉0} - _mod_ : ∀ (x y : ℤ) → .{≢0 : False (y ≟ᶻ 0ℤ)} → ℤ - (x mod y) {≢0} = x +ᶻ -ᶻ y *ᶻ (x div y) {≢0} + infixl 5 _<<_ + _<<_ : ℤ → ℕ → ℤ + x << n = x *ᶻ 2ℤ ^′ᶻ n - module 2^n≢0 - (≈ᶻ-trans : Transitive _≈ᶻ_) - (round∘float : ∀ x → x ≈ᶻ round (float x)) - (round-cong : ∀ {x y} → x ≈ʳ y → round x ≈ᶻ round y) - (0#-homo-round : round 0ℝ ≈ᶻ 0ℤ) - (2^n≢0 : ∀ n → False (2ℤ ^ᶻ n ≟ᶻ 0ℤ)) + module ShiftNotZero + (1<<n≉0 : ∀ n → False (float (1ℤ << n) ≟ʳ 0ℝ)) where - open divmod ≈ᶻ-trans round∘float round-cong 0#-homo-round public - + infixl 5 _>>_ _>>_ : ℤ → ℕ → ℤ - x >> n = (x div (2ℤ ^ᶻ n)) {2^n≢0 n} - - getᶻ : ℕ → ℤ → Bits 1 - getᶻ i x = if (does ((x mod (2ℤ ^ᶻ suc i)) {2^n≢0 (suc i)} <?ᶻ 2ℤ ^ᶻ i)) then 0b else 1b - - module sliceᶻ - (≈ᶻ-trans : Transitive _≈ᶻ_) - (round∘float : ∀ x → x ≈ᶻ round (float x)) - (round-cong : ∀ {x y} → x ≈ʳ y → round x ≈ᶻ round y) - (0#-homo-round : round 0ℝ ≈ᶻ 0ℤ) - (2^n≢0 : ∀ n → False (2ℤ ^ᶻ n ≟ᶻ 0ℤ)) - (*ᶻ-identityʳ : ∀ x → x *ᶻ 1ℤ ≈ᶻ x) - where + x >> zero = x + x >> suc n = (x div (1ℤ << suc n)) {1<<n≉0 (suc n)} - open 2^n≢0 ≈ᶻ-trans round∘float round-cong 0#-homo-round 2^n≢0 public + getᶻ : ℕ → ℤ → Bit + getᶻ n x = + if does ((x mod (1ℤ << suc n)) {1<<n≉0 (suc n)} <ᶻ? 1ℤ << n) + then 1𝔹 + else 0𝔹 sliceᶻ : ∀ n i → ℤ → Bits (n ℕ-ℕ i) - sliceᶻ zero zero z = [] - sliceᶻ (suc n) zero z = getᶻ n z ∶ sliceᶻ n zero z - sliceᶻ (suc n) (suc i) z = sliceᶻ n i ((z div 2ℤ) {2≢0}) - where - 2≢0 = map-False (≈ᶻ-trans (*ᶻ-identityʳ 2ℤ)) (2^n≢0 1) + sliceᶻ zero zero x = [] + sliceᶻ (suc n) zero x = getᶻ n x ∷ sliceᶻ n zero x + sliceᶻ (suc n) (suc i) x = sliceᶻ n i (x >> 1) + + uint : ∀ {n} → Bits n → ℤ + uint x = sumᶻ λ i → if hasBit i x then 1ℤ << toℕ i else 0ℤ + + sint : ∀ {n} → Bits n → ℤ + sint {zero} x = 0ℤ + sint {suc n} x = uint x -ᶻ (if hasBit (fromℕ n) x then 1ℤ << suc n else 0ℤ) |