diff options
author | Greg Brown <greg.brown@cl.cam.ac.uk> | 2022-01-07 09:59:41 +0000 |
---|---|---|
committer | Greg Brown <greg.brown@cl.cam.ac.uk> | 2022-01-07 09:59:41 +0000 |
commit | 568792d2890028fbf7d011393b6516af27cc8b2f (patch) | |
tree | 3a9f73f1990d127f85070ff0abde7812c135f016 /src/Helium/Semantics | |
parent | 5052a3f5ddf5cc65bb5a19e644b01694ba34d0f5 (diff) |
Rename ⟦_⟧ to float.
Diffstat (limited to 'src/Helium/Semantics')
-rw-r--r-- | src/Helium/Semantics/Denotational.agda | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/src/Helium/Semantics/Denotational.agda b/src/Helium/Semantics/Denotational.agda index dce07e6..77786f1 100644 --- a/src/Helium/Semantics/Denotational.agda +++ b/src/Helium/Semantics/Denotational.agda @@ -167,14 +167,14 @@ copyMasked dest = module fun-sliceᶻ (≈ᶻ-trans : Transitive _≈ᶻ_) - (round∘⟦⟧ : ∀ x → x ≈ᶻ round ⟦ x ⟧) + (round∘float : ∀ x → x ≈ᶻ round (float x)) (round-cong : ∀ {x y} → x ≈ʳ y → round x ≈ᶻ round y) (0#-homo-round : round 0ℝ ≈ᶻ 0ℤ) (2^n≢0 : ∀ n → False (2ℤ ^ᶻ n ≟ᶻ 0ℤ)) (*ᶻ-identityʳ : ∀ x → x *ᶻ 1ℤ ≈ᶻ x) where - open sliceᶻ ≈ᶻ-trans round∘⟦⟧ round-cong 0#-homo-round 2^n≢0 *ᶻ-identityʳ + open sliceᶻ ≈ᶻ-trans round∘float round-cong 0#-homo-round 2^n≢0 *ᶻ-identityʳ signedSatQ : ∀ n → Function 1 (ℤ , _) (Bits (suc n) × Bool) signedSatQ n = declare ⦇ true ⦈ $ @@ -249,15 +249,15 @@ module _ module _ (≈ᶻ-trans : Transitive _≈ᶻ_) - (round∘⟦⟧ : ∀ x → x ≈ᶻ round ⟦ x ⟧) + (round∘float : ∀ x → x ≈ᶻ round (float x)) (round-cong : ∀ {x y} → x ≈ʳ y → round x ≈ᶻ round y) (0#-homo-round : round 0ℝ ≈ᶻ 0ℤ) (2^n≢0 : ∀ n → False (2ℤ ^ᶻ n ≟ᶻ 0ℤ)) (*ᶻ-identityʳ : ∀ x → x *ᶻ 1ℤ ≈ᶻ x) where - open sliceᶻ ≈ᶻ-trans round∘⟦⟧ round-cong 0#-homo-round 2^n≢0 *ᶻ-identityʳ - open fun-sliceᶻ ≈ᶻ-trans round∘⟦⟧ round-cong 0#-homo-round 2^n≢0 *ᶻ-identityʳ + open sliceᶻ ≈ᶻ-trans round∘float round-cong 0#-homo-round 2^n≢0 *ᶻ-identityʳ + open fun-sliceᶻ ≈ᶻ-trans round∘float round-cong 0#-homo-round 2^n≢0 *ᶻ-identityʳ vadd : VAdd → Procedure 2 (Beat , ElmtMask , _) vadd d = vec-op₂ d (λ x y → sliceᶻ _ zero (uint x +ᶻ uint y)) |