summaryrefslogtreecommitdiff
path: root/src/Helium/Semantics
diff options
context:
space:
mode:
authorGreg Brown <greg.brown@cl.cam.ac.uk>2022-02-17 16:34:54 +0000
committerGreg Brown <greg.brown@cl.cam.ac.uk>2022-02-17 16:34:54 +0000
commit60b201d0c8752b84194753bb72eee777bf245fe3 (patch)
tree59a7eb2e8189ee84e7664dc1e562e88bbb09bac1 /src/Helium/Semantics
parent273b6354ea17be93a0dfe4f50cd047b328762b02 (diff)
Make call and invoke take All instead of tuple.
Diffstat (limited to 'src/Helium/Semantics')
-rw-r--r--src/Helium/Semantics/Denotational/Core.agda9
1 files changed, 7 insertions, 2 deletions
diff --git a/src/Helium/Semantics/Denotational/Core.agda b/src/Helium/Semantics/Denotational/Core.agda
index 25f0448..d4060f5 100644
--- a/src/Helium/Semantics/Denotational/Core.agda
+++ b/src/Helium/Semantics/Denotational/Core.agda
@@ -152,6 +152,7 @@ module Expression
⟦_⟧ˢ : ∀ {n} {Γ : Vec Type n} → Statement Γ → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′
⟦_⟧ᶠ : ∀ {n} {Γ : Vec Type n} {ret} → Function Γ ret → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ ret ⟧ₜ
⟦_⟧ᵖ : ∀ {n} {Γ : Vec Type n} → Procedure Γ → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′
+ ⟦_⟧ᵉ′ : ∀ {n} {Γ : Vec Type n} {m ts} → All (Expression Γ) ts → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ tuple m ts ⟧ₜ
update : ∀ {n Γ t e} → CanAssign {n} {Γ} {t} e → ⟦ t ⟧ₜ → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′
⟦ lit x ⟧ᵉ σ γ = 𝒦 x
@@ -188,14 +189,18 @@ module Expression
⟦ tup [] ⟧ᵉ σ γ = _
⟦ tup (e ∷ []) ⟧ᵉ σ γ = ⟦ e ⟧ᵉ σ γ
⟦ tup (e ∷ e′ ∷ es) ⟧ᵉ σ γ = ⟦ e ⟧ᵉ σ γ , ⟦ tup (e′ ∷ es) ⟧ᵉ σ γ
- ⟦ call f e ⟧ᵉ σ γ = ⟦ f ⟧ᶠ σ (⟦ e ⟧ᵉ σ γ)
+ ⟦ call f e ⟧ᵉ σ γ = ⟦ f ⟧ᶠ σ (⟦ e ⟧ᵉ′ σ γ)
⟦ if e then e₁ else e₂ ⟧ᵉ σ γ = Bool.if ⟦ e ⟧ᵉ σ γ then ⟦ e₁ ⟧ᵉ σ γ else ⟦ e₂ ⟧ᵉ σ γ
+ ⟦ [] ⟧ᵉ′ σ γ = _
+ ⟦ e ∷ [] ⟧ᵉ′ σ γ = ⟦ e ⟧ᵉ σ γ
+ ⟦ e ∷ e′ ∷ es ⟧ᵉ′ σ γ = ⟦ e ⟧ᵉ σ γ , ⟦ e′ ∷ es ⟧ᵉ′ σ γ
+
⟦ s ∙ s₁ ⟧ˢ σ γ = P.uncurry ⟦ s ⟧ˢ (⟦ s ⟧ˢ σ γ)
⟦ skip ⟧ˢ σ γ = σ , γ
⟦ _≔_ ref {canAssign = canAssign} e ⟧ˢ σ γ = update (toWitness canAssign) (⟦ e ⟧ᵉ σ γ) σ γ
⟦_⟧ˢ {Γ = Γ} (declare e s) σ γ = P.map₂ (tupTail Γ) (⟦ s ⟧ˢ σ (tupCons Γ (⟦ e ⟧ᵉ σ γ) γ))
- ⟦ invoke p e ⟧ˢ σ γ = ⟦ p ⟧ᵖ σ (⟦ e ⟧ᵉ σ γ) , γ
+ ⟦ invoke p e ⟧ˢ σ γ = ⟦ p ⟧ᵖ σ (⟦ e ⟧ᵉ′ σ γ) , γ
⟦ if e then s₁ else s₂ ⟧ˢ σ γ = Bool.if ⟦ e ⟧ᵉ σ γ then ⟦ s₁ ⟧ˢ σ γ else ⟦ s₂ ⟧ˢ σ γ
⟦_⟧ˢ {Γ = Γ} (for m s) σ γ = helper m ⟦ s ⟧ˢ σ γ
where