summaryrefslogtreecommitdiff
path: root/src/Helium/Data/Pseudocode.agda
diff options
context:
space:
mode:
Diffstat (limited to 'src/Helium/Data/Pseudocode.agda')
-rw-r--r--src/Helium/Data/Pseudocode.agda412
1 files changed, 0 insertions, 412 deletions
diff --git a/src/Helium/Data/Pseudocode.agda b/src/Helium/Data/Pseudocode.agda
deleted file mode 100644
index d75ddba..0000000
--- a/src/Helium/Data/Pseudocode.agda
+++ /dev/null
@@ -1,412 +0,0 @@
-------------------------------------------------------------------------
--- Agda Helium
---
--- Definition of types and operations used by the Armv8-M pseudocode.
-------------------------------------------------------------------------
-
-{-# OPTIONS --safe --without-K #-}
-
-module Helium.Data.Pseudocode where
-
-open import Algebra.Core
-import Algebra.Definitions.RawSemiring as RS
-open import Data.Bool.Base using (Bool; if_then_else_)
-open import Data.Empty using (⊥-elim)
-open import Data.Fin.Base as Fin hiding (cast)
-import Data.Fin.Properties as Fₚ
-import Data.Fin.Induction as Induction
-open import Data.Nat.Base using (ℕ; zero; suc)
-open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_]′)
-open import Data.Vec.Functional
-open import Data.Vec.Functional.Relation.Binary.Pointwise using (Pointwise)
-import Data.Vec.Functional.Relation.Binary.Pointwise.Properties as Pwₚ
-open import Function using (_$_; _∘′_; id)
-open import Helium.Algebra.Ordered.StrictTotal.Bundles
-open import Helium.Algebra.Decidable.Bundles
- using (BooleanAlgebra; RawBooleanAlgebra)
-import Helium.Algebra.Decidable.Construct.Pointwise as Pw
-open import Helium.Algebra.Morphism.Structures
-open import Level using (_⊔_) renaming (suc to ℓsuc)
-open import Relation.Binary.Core using (Rel)
-open import Relation.Binary.Definitions
-open import Relation.Binary.PropositionalEquality as P using (_≡_)
-import Relation.Binary.Reasoning.StrictPartialOrder as Reasoning
-open import Relation.Binary.Structures using (IsStrictTotalOrder)
-open import Relation.Nullary using (does; yes; no)
-open import Relation.Nullary.Decidable.Core
- using (False; toWitnessFalse; fromWitnessFalse)
-
-record RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃ : Set (ℓsuc (b₁ ⊔ b₂ ⊔ i₁ ⊔ i₂ ⊔ i₃ ⊔ r₁ ⊔ r₂ ⊔ r₃)) where
- field
- bitRawBooleanAlgebra : RawBooleanAlgebra b₁ b₂
- integerRawRing : RawRing i₁ i₂ i₃
- realRawField : RawField r₁ r₂ r₃
-
- bitsRawBooleanAlgebra : ℕ → RawBooleanAlgebra b₁ b₂
- bitsRawBooleanAlgebra = Pw.rawBooleanAlgebra bitRawBooleanAlgebra
-
- module 𝔹 = RawBooleanAlgebra bitRawBooleanAlgebra
- renaming (Carrier to Bit; ⊤ to 1𝔹; ⊥ to 0𝔹)
- module Bits {n} = RawBooleanAlgebra (bitsRawBooleanAlgebra n)
- renaming (⊤ to ones; ⊥ to zeros)
- module ℤ = RawRing integerRawRing renaming (Carrier to ℤ; 1# to 1ℤ; 0# to 0ℤ)
- module ℝ = RawField realRawField renaming (Carrier to ℝ; 1# to 1ℝ; 0# to 0ℝ)
- module ℤ′ = RS ℤ.Unordered.rawSemiring
- module ℝ′ = RS ℝ.Unordered.rawSemiring
-
- Bits : ℕ → Set b₁
- Bits n = Bits.Carrier {n}
-
- open 𝔹 public using (Bit; 1𝔹; 0𝔹)
- open Bits public using (ones; zeros)
- open ℤ public using (ℤ; 1ℤ; 0ℤ)
- open ℝ public using (ℝ; 1ℝ; 0ℝ)
-
- infix 4 _≟ᶻ_ _<ᶻ?_ _≟ʳ_ _<ʳ?_ _≟ᵇ₁_ _≟ᵇ_
- field
- _≟ᶻ_ : Decidable ℤ._≈_
- _<ᶻ?_ : Decidable ℤ._<_
- _≟ʳ_ : Decidable ℝ._≈_
- _<ʳ?_ : Decidable ℝ._<_
- _≟ᵇ₁_ : Decidable 𝔹._≈_
-
- _≟ᵇ_ : ∀ {n} → Decidable (Bits._≈_ {n})
- _≟ᵇ_ = Pwₚ.decidable _≟ᵇ₁_
-
- field
- _/1 : ℤ → ℝ
- ⌊_⌋ : ℝ → ℤ
-
- cast : ∀ {m n} → .(eq : m ≡ n) → Bits m → Bits n
- cast eq x i = x $ Fin.cast (P.sym eq) i
-
- 2ℤ : ℤ
- 2ℤ = 2 ℤ′.×′ 1ℤ
-
- getᵇ : ∀ {n} → Fin n → Bits n → Bit
- getᵇ i x = x (opposite i)
-
- setᵇ : ∀ {n} → Fin n → Bit → Op₁ (Bits n)
- setᵇ i b = updateAt (opposite i) λ _ → b
-
- sliceᵇ : ∀ {n} (i : Fin (suc n)) j → Bits n → Bits (toℕ (i - j))
- sliceᵇ zero zero x = []
- sliceᵇ {suc n} (suc i) zero x = getᵇ i x ∷ sliceᵇ i zero (tail x)
- sliceᵇ {suc n} (suc i) (suc j) x = sliceᵇ i j (tail x)
-
- updateᵇ : ∀ {n} (i : Fin (suc n)) j → Bits (toℕ (i - j)) → Op₁ (Bits n)
- updateᵇ {n} = Induction.<-weakInduction P (λ _ _ → id) helper
- where
- P : Fin (suc n) → Set b₁
- P i = ∀ j → Bits (toℕ (i - j)) → Op₁ (Bits n)
-
- eq : ∀ {n} {i : Fin n} → toℕ i ≡ toℕ (inject₁ i)
- eq = P.sym $ Fₚ.toℕ-inject₁ _
-
- eq′ : ∀ {n} {i : Fin n} j → toℕ (i - j) ≡ toℕ (inject₁ i - Fin.cast eq j)
- eq′ zero = eq
- eq′ {i = suc _} (suc j) = eq′ j
-
- helper : ∀ i → P (inject₁ i) → P (suc i)
- helper i rec zero y = rec zero (cast eq (tail y)) ∘′ setᵇ i (y zero)
- helper i rec (suc j) y = rec (Fin.cast eq j) (cast (eq′ j) y)
-
- hasBit : ∀ {n} → Fin n → Bits n → Bool
- hasBit i x = does (getᵇ i x ≟ᵇ₁ 1𝔹)
-
- infixl 7 _div_ _mod_
-
- _div_ : ∀ (x y : ℤ) → {y≉0 : False (y /1 ≟ʳ 0ℝ)} → ℤ
- (x div y) {y≉0} = ⌊ x /1 ℝ.* toWitnessFalse y≉0 ℝ.⁻¹ ⌋
-
- _mod_ : ∀ (x y : ℤ) → {y≉0 : False (y /1 ≟ʳ 0ℝ)} → ℤ
- (x mod y) {y≉0} = x ℤ.+ ℤ.- y ℤ.* (x div y) {y≉0}
-
- infixl 5 _<<_
- _<<_ : ℤ → ℕ → ℤ
- x << n = 2ℤ ℤ′.^′ n ℤ.* x
-
- module ShiftNotZero
- (1<<n≉0 : ∀ n → False ((1ℤ << n) /1 ≟ʳ 0ℝ))
- where
-
- infixl 5 _>>_
- _>>_ : ℤ → ℕ → ℤ
- x >> zero = x
- x >> suc n = (x div (1ℤ << suc n)) {1<<n≉0 (suc n)}
-
- getᶻ : ℕ → ℤ → Bit
- getᶻ n x =
- if does ((x mod (1ℤ << suc n)) {1<<n≉0 (suc n)} <ᶻ? 1ℤ << n)
- then 1𝔹
- else 0𝔹
-
- sliceᶻ : ∀ n i → ℤ → Bits (n ℕ-ℕ i)
- sliceᶻ zero zero x = []
- sliceᶻ (suc n) zero x = getᶻ n x ∷ sliceᶻ n zero x
- sliceᶻ (suc n) (suc i) x = sliceᶻ n i (x >> 1)
-
- uint : ∀ {n} → Bits n → ℤ
- uint x = ℤ′.sum λ i → if hasBit i x then 1ℤ << toℕ i else 0ℤ
-
- sint : ∀ {n} → Bits n → ℤ
- sint {zero} x = 0ℤ
- sint {suc n} x = uint x ℤ.+ ℤ.- (if hasBit (fromℕ n) x then 1ℤ << suc n else 0ℤ)
-
-record Pseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃ :
- Set (ℓsuc (b₁ ⊔ b₂ ⊔ i₁ ⊔ i₂ ⊔ i₃ ⊔ r₁ ⊔ r₂ ⊔ r₃)) where
- field
- bitBooleanAlgebra : BooleanAlgebra b₁ b₂
- integerRing : CommutativeRing i₁ i₂ i₃
- realField : Field r₁ r₂ r₃
-
- bitsBooleanAlgebra : ℕ → BooleanAlgebra b₁ b₂
- bitsBooleanAlgebra = Pw.booleanAlgebra bitBooleanAlgebra
-
- module 𝔹 = BooleanAlgebra bitBooleanAlgebra
- renaming (Carrier to Bit; ⊤ to 1𝔹; ⊥ to 0𝔹)
- module Bits {n} = BooleanAlgebra (bitsBooleanAlgebra n)
- renaming (⊤ to ones; ⊥ to zeros)
- module ℤ = CommutativeRing integerRing
- renaming (Carrier to ℤ; 1# to 1ℤ; 0# to 0ℤ)
- module ℝ = Field realField
- renaming (Carrier to ℝ; 1# to 1ℝ; 0# to 0ℝ)
-
- Bits : ℕ → Set b₁
- Bits n = Bits.Carrier {n}
-
- open 𝔹 public using (Bit; 1𝔹; 0𝔹)
- open Bits public using (ones; zeros)
- open ℤ public using (ℤ; 1ℤ; 0ℤ)
- open ℝ public using (ℝ; 1ℝ; 0ℝ)
-
- module ℤ-Reasoning = Reasoning ℤ.strictPartialOrder
- module ℝ-Reasoning = Reasoning ℝ.strictPartialOrder
-
- field
- integerDiscrete : ∀ x y → y ℤ.≤ x ⊎ x ℤ.+ 1ℤ ℤ.≤ y
- 1≉0 : 1ℤ ℤ.≉ 0ℤ
-
- _/1 : ℤ → ℝ
- ⌊_⌋ : ℝ → ℤ
- /1-isHomo : IsRingHomomorphism ℤ.Unordered.rawRing ℝ.Unordered.rawRing _/1
- ⌊⌋-isHomo : IsRingHomomorphism ℝ.Unordered.rawRing ℤ.Unordered.rawRing ⌊_⌋
- /1-mono : ∀ x y → x ℤ.< y → x /1 ℝ.< y /1
- ⌊⌋-floor : ∀ x y → x ℤ.≤ ⌊ y ⌋ → ⌊ y ⌋ ℤ.< x ℤ.+ 1ℤ
- ⌊⌋∘/1≗id : ∀ x → ⌊ x /1 ⌋ ℤ.≈ x
-
- module /1 = IsRingHomomorphism /1-isHomo renaming (⟦⟧-cong to cong)
- module ⌊⌋ = IsRingHomomorphism ⌊⌋-isHomo renaming (⟦⟧-cong to cong)
-
- bitRawBooleanAlgebra : RawBooleanAlgebra b₁ b₂
- bitRawBooleanAlgebra = record
- { _≈_ = _≈_
- ; _∨_ = _∨_
- ; _∧_ = _∧_
- ; ¬_ = ¬_
- ; ⊤ = ⊤
- ; ⊥ = ⊥
- }
- where open BooleanAlgebra bitBooleanAlgebra
-
- rawPseudocode : RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃
- rawPseudocode = record
- { bitRawBooleanAlgebra = bitRawBooleanAlgebra
- ; integerRawRing = ℤ.rawRing
- ; realRawField = ℝ.rawField
- ; _≟ᶻ_ = ℤ._≟_
- ; _<ᶻ?_ = ℤ._<?_
- ; _≟ʳ_ = ℝ._≟_
- ; _<ʳ?_ = ℝ._<?_
- ; _≟ᵇ₁_ = 𝔹._≟_
- ; _/1 = _/1
- ; ⌊_⌋ = ⌊_⌋
- }
-
- open RawPseudocode rawPseudocode public
- using
- ( 2ℤ; cast; getᵇ; setᵇ; sliceᵇ; updateᵇ; hasBit
- ; _div_; _mod_; _<<_; uint; sint
- )
-
- private
- -- FIXME: move almost all of these proofs into a separate module
- a<b⇒ca<cb : ∀ {a b c} → 0ℤ ℤ.< c → a ℤ.< b → c ℤ.* a ℤ.< c ℤ.* b
- a<b⇒ca<cb {a} {b} {c} 0<c a<b = begin-strict
- c ℤ.* a ≈˘⟨ ℤ.+-identityʳ _ ⟩
- c ℤ.* a ℤ.+ 0ℤ <⟨ ℤ.+-invariantˡ _ $ ℤ.0<a+0<b⇒0<ab 0<c 0<b-a ⟩
- c ℤ.* a ℤ.+ c ℤ.* (b ℤ.- a) ≈˘⟨ ℤ.distribˡ c a (b ℤ.- a) ⟩
- c ℤ.* (a ℤ.+ (b ℤ.- a)) ≈⟨ ℤ.*-congˡ $ ℤ.+-congˡ $ ℤ.+-comm b (ℤ.- a) ⟩
- c ℤ.* (a ℤ.+ (ℤ.- a ℤ.+ b)) ≈˘⟨ ℤ.*-congˡ $ ℤ.+-assoc a (ℤ.- a) b ⟩
- c ℤ.* ((a ℤ.+ ℤ.- a) ℤ.+ b) ≈⟨ ℤ.*-congˡ $ ℤ.+-congʳ $ ℤ.-‿inverseʳ a ⟩
- c ℤ.* (0ℤ ℤ.+ b) ≈⟨ (ℤ.*-congˡ $ ℤ.+-identityˡ b) ⟩
- c ℤ.* b ∎
- where
- open ℤ-Reasoning
-
- 0<b-a : 0ℤ ℤ.< b ℤ.- a
- 0<b-a = begin-strict
- 0ℤ ≈˘⟨ ℤ.-‿inverseʳ a ⟩
- a ℤ.- a <⟨ ℤ.+-invariantʳ (ℤ.- a) a<b ⟩
- b ℤ.- a ∎
-
- -‿idem : ∀ x → ℤ.- (ℤ.- x) ℤ.≈ x
- -‿idem x = begin-equality
- ℤ.- (ℤ.- x) ≈˘⟨ ℤ.+-identityˡ _ ⟩
- 0ℤ ℤ.- ℤ.- x ≈˘⟨ ℤ.+-congʳ $ ℤ.-‿inverseʳ x ⟩
- x ℤ.- x ℤ.- ℤ.- x ≈⟨ ℤ.+-assoc x (ℤ.- x) _ ⟩
- x ℤ.+ (ℤ.- x ℤ.- ℤ.- x) ≈⟨ ℤ.+-congˡ $ ℤ.-‿inverseʳ (ℤ.- x) ⟩
- x ℤ.+ 0ℤ ≈⟨ ℤ.+-identityʳ x ⟩
- x ∎
- where open ℤ-Reasoning
-
- -a*b≈-ab : ∀ a b → ℤ.- a ℤ.* b ℤ.≈ ℤ.- (a ℤ.* b)
- -a*b≈-ab a b = begin-equality
- ℤ.- a ℤ.* b ≈˘⟨ ℤ.+-identityʳ _ ⟩
- ℤ.- a ℤ.* b ℤ.+ 0ℤ ≈˘⟨ ℤ.+-congˡ $ ℤ.-‿inverseʳ _ ⟩
- ℤ.- a ℤ.* b ℤ.+ (a ℤ.* b ℤ.- a ℤ.* b) ≈˘⟨ ℤ.+-assoc _ _ _ ⟩
- ℤ.- a ℤ.* b ℤ.+ a ℤ.* b ℤ.- a ℤ.* b ≈˘⟨ ℤ.+-congʳ $ ℤ.distribʳ b _ a ⟩
- (ℤ.- a ℤ.+ a) ℤ.* b ℤ.- a ℤ.* b ≈⟨ ℤ.+-congʳ $ ℤ.*-congʳ $ ℤ.-‿inverseˡ a ⟩
- 0ℤ ℤ.* b ℤ.- a ℤ.* b ≈⟨ ℤ.+-congʳ $ ℤ.zeroˡ b ⟩
- 0ℤ ℤ.- a ℤ.* b ≈⟨ ℤ.+-identityˡ _ ⟩
- ℤ.- (a ℤ.* b) ∎
- where open ℤ-Reasoning
-
- a*-b≈-ab : ∀ a b → a ℤ.* ℤ.- b ℤ.≈ ℤ.- (a ℤ.* b)
- a*-b≈-ab a b = begin-equality
- a ℤ.* ℤ.- b ≈⟨ ℤ.*-comm a (ℤ.- b) ⟩
- ℤ.- b ℤ.* a ≈⟨ -a*b≈-ab b a ⟩
- ℤ.- (b ℤ.* a) ≈⟨ ℤ.-‿cong $ ℤ.*-comm b a ⟩
- ℤ.- (a ℤ.* b) ∎
- where open ℤ-Reasoning
-
- 0<a⇒0>-a : ∀ {a} → 0ℤ ℤ.< a → 0ℤ ℤ.> ℤ.- a
- 0<a⇒0>-a {a} 0<a = begin-strict
- ℤ.- a ≈˘⟨ ℤ.+-identityˡ _ ⟩
- 0ℤ ℤ.- a <⟨ ℤ.+-invariantʳ _ 0<a ⟩
- a ℤ.- a ≈⟨ ℤ.-‿inverseʳ a ⟩
- 0ℤ ∎
- where open ℤ-Reasoning
-
- 0>a⇒0<-a : ∀ {a} → 0ℤ ℤ.> a → 0ℤ ℤ.< ℤ.- a
- 0>a⇒0<-a {a} 0>a = begin-strict
- 0ℤ ≈˘⟨ ℤ.-‿inverseʳ a ⟩
- a ℤ.- a <⟨ ℤ.+-invariantʳ _ 0>a ⟩
- 0ℤ ℤ.- a ≈⟨ ℤ.+-identityˡ _ ⟩
- ℤ.- a ∎
- where open ℤ-Reasoning
-
- 0<-a⇒0>a : ∀ {a} → 0ℤ ℤ.< ℤ.- a → 0ℤ ℤ.> a
- 0<-a⇒0>a {a} 0<-a = begin-strict
- a ≈˘⟨ ℤ.+-identityʳ a ⟩
- a ℤ.+ 0ℤ <⟨ ℤ.+-invariantˡ a 0<-a ⟩
- a ℤ.- a ≈⟨ ℤ.-‿inverseʳ a ⟩
- 0ℤ ∎
- where open ℤ-Reasoning
-
- 0>-a⇒0<a : ∀ {a} → 0ℤ ℤ.> ℤ.- a → 0ℤ ℤ.< a
- 0>-a⇒0<a {a} 0>-a = begin-strict
- 0ℤ ≈˘⟨ ℤ.-‿inverseʳ a ⟩
- a ℤ.- a <⟨ ℤ.+-invariantˡ a 0>-a ⟩
- a ℤ.+ 0ℤ ≈⟨ ℤ.+-identityʳ a ⟩
- a ∎
- where open ℤ-Reasoning
-
- 0>a+0<b⇒0>ab : ∀ {a b} → 0ℤ ℤ.> a → 0ℤ ℤ.< b → 0ℤ ℤ.> a ℤ.* b
- 0>a+0<b⇒0>ab {a} {b} 0>a 0<b = 0<-a⇒0>a $ begin-strict
- 0ℤ <⟨ ℤ.0<a+0<b⇒0<ab (0>a⇒0<-a 0>a) 0<b ⟩
- ℤ.- a ℤ.* b ≈⟨ -a*b≈-ab a b ⟩
- ℤ.- (a ℤ.* b) ∎
- where open ℤ-Reasoning
-
- 0<a+0>b⇒0>ab : ∀ {a b} → 0ℤ ℤ.< a → 0ℤ ℤ.> b → 0ℤ ℤ.> a ℤ.* b
- 0<a+0>b⇒0>ab {a} {b} 0<a 0>b = 0<-a⇒0>a $ begin-strict
- 0ℤ <⟨ ℤ.0<a+0<b⇒0<ab 0<a (0>a⇒0<-a 0>b) ⟩
- a ℤ.* ℤ.- b ≈⟨ a*-b≈-ab a b ⟩
- ℤ.- (a ℤ.* b) ∎
- where open ℤ-Reasoning
-
- 0>a+0>b⇒0<ab : ∀ {a b} → 0ℤ ℤ.> a → 0ℤ ℤ.> b → 0ℤ ℤ.< a ℤ.* b
- 0>a+0>b⇒0<ab {a} {b} 0>a 0>b = begin-strict
- 0ℤ <⟨ ℤ.0<a+0<b⇒0<ab (0>a⇒0<-a 0>a) (0>a⇒0<-a 0>b) ⟩
- ℤ.- a ℤ.* ℤ.- b ≈⟨ -a*b≈-ab a (ℤ.- b) ⟩
- ℤ.- (a ℤ.* ℤ.- b) ≈⟨ ℤ.-‿cong $ a*-b≈-ab a b ⟩
- ℤ.- (ℤ.- (a ℤ.* b)) ≈⟨ -‿idem (a ℤ.* b) ⟩
- a ℤ.* b ∎
- where open ℤ-Reasoning
-
- a≉0+b≉0⇒ab≉0 : ∀ {a b} → a ℤ.≉ 0ℤ → b ℤ.≉ 0ℤ → a ℤ.* b ℤ.≉ 0ℤ
- a≉0+b≉0⇒ab≉0 {a} {b} a≉0 b≉0 ab≈0 with ℤ.compare a 0ℤ | ℤ.compare b 0ℤ
- ... | tri< a<0 _ _ | tri< b<0 _ _ = ℤ.irrefl (ℤ.Eq.sym ab≈0) $ 0>a+0>b⇒0<ab a<0 b<0
- ... | tri< a<0 _ _ | tri≈ _ b≈0 _ = b≉0 b≈0
- ... | tri< a<0 _ _ | tri> _ _ b>0 = ℤ.irrefl ab≈0 $ 0>a+0<b⇒0>ab a<0 b>0
- ... | tri≈ _ a≈0 _ | _ = a≉0 a≈0
- ... | tri> _ _ a>0 | tri< b<0 _ _ = ℤ.irrefl ab≈0 $ 0<a+0>b⇒0>ab a>0 b<0
- ... | tri> _ _ a>0 | tri≈ _ b≈0 _ = b≉0 b≈0
- ... | tri> _ _ a>0 | tri> _ _ b>0 = ℤ.irrefl (ℤ.Eq.sym ab≈0) $ ℤ.0<a+0<b⇒0<ab a>0 b>0
-
- ab≈0⇒a≈0⊎b≈0 : ∀ {a b} → a ℤ.* b ℤ.≈ 0ℤ → a ℤ.≈ 0ℤ ⊎ b ℤ.≈ 0ℤ
- ab≈0⇒a≈0⊎b≈0 {a} {b} ab≈0 with a ℤ.≟ 0ℤ | b ℤ.≟ 0ℤ
- ... | yes a≈0 | _ = inj₁ a≈0
- ... | no a≉0 | yes b≈0 = inj₂ b≈0
- ... | no a≉0 | no b≉0 = ⊥-elim (a≉0+b≉0⇒ab≉0 a≉0 b≉0 ab≈0)
-
- 2a<<n≈a<<1+n : ∀ a n → 2ℤ ℤ.* (a << n) ℤ.≈ a << suc n
- 2a<<n≈a<<1+n a zero = ℤ.*-congˡ $ ℤ.*-identityˡ a
- 2a<<n≈a<<1+n a (suc n) = begin-equality
- 2ℤ ℤ.* (a << suc n) ≈˘⟨ ℤ.*-assoc 2ℤ _ a ⟩
- (2ℤ ℤ.* _) ℤ.* a ≈⟨ ℤ.*-congʳ $ ℤ.*-comm 2ℤ _ ⟩
- a << suc (suc n) ∎
- where open ℤ-Reasoning
-
- 0<1 : 0ℤ ℤ.< 1ℤ
- 0<1 with ℤ.compare 0ℤ 1ℤ
- ... | tri< 0<1 _ _ = 0<1
- ... | tri≈ _ 0≈1 _ = ⊥-elim (1≉0 (ℤ.Eq.sym 0≈1))
- ... | tri> _ _ 0>1 = begin-strict
- 0ℤ ≈˘⟨ ℤ.zeroʳ (ℤ.- 1ℤ) ⟩
- ℤ.- 1ℤ ℤ.* 0ℤ <⟨ a<b⇒ca<cb (0>a⇒0<-a 0>1) (0>a⇒0<-a 0>1) ⟩
- ℤ.- 1ℤ ℤ.* ℤ.- 1ℤ ≈⟨ -a*b≈-ab 1ℤ (ℤ.- 1ℤ) ⟩
- ℤ.- (1ℤ ℤ.* ℤ.- 1ℤ) ≈⟨ ℤ.-‿cong $ ℤ.*-identityˡ (ℤ.- 1ℤ) ⟩
- ℤ.- (ℤ.- 1ℤ) ≈⟨ -‿idem 1ℤ ⟩
- 1ℤ ∎
- where open ℤ-Reasoning
-
- 0<2 : 0ℤ ℤ.< 2ℤ
- 0<2 = begin-strict
- 0ℤ ≈˘⟨ ℤ.+-identity² ⟩
- 0ℤ ℤ.+ 0ℤ <⟨ ℤ.+-invariantˡ 0ℤ 0<1 ⟩
- 0ℤ ℤ.+ 1ℤ <⟨ ℤ.+-invariantʳ 1ℤ 0<1 ⟩
- 2ℤ ∎
- where open ℤ-Reasoning
-
- 1<<n≉0 : ∀ n → 1ℤ << n ℤ.≉ 0ℤ
- 1<<n≉0 zero eq = 1≉0 1≈0
- where
- open ℤ-Reasoning
- 1≈0 = begin-equality
- 1ℤ ≈˘⟨ ℤ.*-identity² ⟩
- 1ℤ ℤ.* 1ℤ ≈⟨ eq ⟩
- 0ℤ ∎
- 1<<n≉0 (suc zero) eq = ℤ.irrefl 0≈2 0<2
- where
- open ℤ-Reasoning
- 0≈2 = begin-equality
- 0ℤ ≈˘⟨ eq ⟩
- 2ℤ ℤ.* 1ℤ ≈⟨ ℤ.*-identityʳ 2ℤ ⟩
- 2ℤ ∎
- 1<<n≉0 (suc (suc n)) eq =
- [ (λ 2≈0 → ℤ.irrefl (ℤ.Eq.sym 2≈0) 0<2) , 1<<n≉0 (suc n) ]′
- $ ab≈0⇒a≈0⊎b≈0 $ ℤ.Eq.trans (2a<<n≈a<<1+n 1ℤ (suc n)) eq
-
- 1<<n≉0ℝ : ∀ n → (1ℤ << n) /1 ℝ.≉ 0ℝ
- 1<<n≉0ℝ n eq = 1<<n≉0 n $ (begin-equality
- 1ℤ << n ≈˘⟨ ⌊⌋∘/1≗id (1ℤ << n) ⟩
- ⌊ (1ℤ << n) /1 ⌋ ≈⟨ ⌊⌋.cong $ eq ⟩
- ⌊ 0ℝ ⌋ ≈⟨ ⌊⌋.0#-homo ⟩
- 0ℤ ∎)
- where open ℤ-Reasoning
-
- open RawPseudocode rawPseudocode using (module ShiftNotZero)
-
- open ShiftNotZero (λ n → fromWitnessFalse (1<<n≉0ℝ n)) public