diff options
Diffstat (limited to 'src/Helium/Semantics/Denotational.agda')
-rw-r--r-- | src/Helium/Semantics/Denotational.agda | 141 |
1 files changed, 141 insertions, 0 deletions
diff --git a/src/Helium/Semantics/Denotational.agda b/src/Helium/Semantics/Denotational.agda new file mode 100644 index 0000000..b80378b --- /dev/null +++ b/src/Helium/Semantics/Denotational.agda @@ -0,0 +1,141 @@ +{-# OPTIONS --safe --without-K #-} + +open import Helium.Data.Pseudocode + +module Helium.Semantics.Denotational + {b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃} + (pseudocode : RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃) + where + +open import Data.Fin as Fin hiding (cast; lift; _+_) +import Data.Fin.Properties as Finₚ +open import Data.Maybe using (just; nothing; _>>=_) +open import Data.Nat hiding (_⊔_) +import Data.Nat.Properties as ℕₚ +open import Data.Product using (∃; _,_; dmap) +open import Data.Sum using ([_,_]′) +open import Data.Vec.Functional as V using (Vector) +open import Function.Nary.NonDependent.Base +open import Helium.Instructions +import Helium.Semantics.Denotational.Core as Core +open import Level hiding (lift; zero; suc) +open import Relation.Binary using (Transitive) +open import Relation.Binary.PropositionalEquality +open import Relation.Nullary +open import Relation.Nullary.Decidable + +open RawPseudocode pseudocode + +private + ℓ : Level + ℓ = b₁ + +record State : Set ℓ where + field + S : Vector (Bits 32) 32 + R : Vector (Bits 32) 16 + +open Core State + +Beat : Set +Beat = Fin 4 + +ElmtMask : Set b₁ +ElmtMask = Bits 4 + +-- State properties + +&R : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ (Fin 16) → Reference n Γ (Bits 32) +&R e = record + { get = λ σ ρ → e σ ρ >>= λ (σ , i) → just (σ , State.R σ i) + ; set = λ σ ρ x → e σ ρ >>= λ (σ , i) → just (record σ { R = V.updateAt i (λ _ → x) (State.R σ) } , ρ) + } + +&S : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ (Fin 32) → Reference n Γ (Bits 32) +&S e = record + { get = λ σ ρ → e σ ρ >>= λ (σ , i) → just (σ , State.S σ i) + ; set = λ σ ρ x → e σ ρ >>= λ (σ , i) → just (record σ { S = V.updateAt i (λ _ → x) (State.S σ) } , ρ) + } + +&Q : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ VecReg → Expr n Γ Beat → Reference n Γ (Bits 32) +&Q reg beat = &S (λ σ ρ → reg σ ρ >>= λ (σ , reg) → beat σ ρ >>= λ (σ , beat) → just (σ , combine reg beat)) + +-- Reference properties + +&cast : ∀ {k m n ls} {Γ : Sets n ls} → .(eq : k ≡ m) → Reference n Γ (Bits k) → Reference n Γ (Bits m) +&cast eq &v = record + { get = λ σ ρ → Reference.get &v σ ρ >>= λ (σ , v) → just (σ , cast eq v) + ; set = λ σ ρ x → Reference.set &v σ ρ (cast (sym eq) x) + } + +slice : ∀ {k m n ls} {Γ : Sets n ls} → Reference n Γ (Bits m) → Expr n Γ (∃ λ (i : Fin (suc m)) → ∃ λ j → toℕ (i - j) ≡ k) → Reference n Γ (Bits k) +slice &v idx = record + { get = λ σ ρ → Reference.get &v σ ρ >>= λ (σ , v) → idx σ ρ >>= λ (σ , i , j , i-j≡k) → just (σ , cast i-j≡k (sliceᵇ i j v)) + ; set = λ σ ρ v → Reference.get &v σ ρ >>= λ (σ , v′) → idx σ ρ >>= λ (σ , i , j , i-j≡k) → Reference.set &v σ ρ (updateᵇ i j (cast (sym i-j≡k) v) v′) + } + +elem : ∀ {k n ls} {Γ : Sets n ls} m → Reference n Γ (Bits (k * m)) → Expr n Γ (Fin k) → Reference n Γ (Bits m) +elem m &v idx = slice &v λ σ ρ → idx σ ρ >>= λ (σ , i) → just (σ , helper _ _ i) + where + helper : ∀ m n → Fin m → ∃ λ (i : Fin (suc (m * n))) → ∃ λ j → toℕ (i - j) ≡ n + helper (suc m) n zero = inject+ (m * n) (fromℕ n) , # 0 , eq + where + eq = trans (sym (Finₚ.toℕ-inject+ (m * n) (fromℕ n))) (Finₚ.toℕ-fromℕ n) + helper (suc m) n (suc i) with x , y , x-y≡n ← helper m n i = + u , + v , + trans + (cast‿- (raise n x) (Fin.cast eq₂ (raise n y)) eq₁) + (trans (raise‿- (suc (m * n)) n x y eq₂) x-y≡n) + where + eq₁ = ℕₚ.+-suc n (m * n) + eq₂ = trans (ℕₚ.+-suc n (toℕ x)) (cong suc (sym (Finₚ.toℕ-raise n x))) + eq₂′ = cong suc (sym (Finₚ.toℕ-cast eq₁ (raise n x))) + u = Fin.cast eq₁ (raise n x) + v = Fin.cast eq₂′ (Fin.cast eq₂ (raise n y)) + + raise‿- : ∀ m n (x : Fin m) y .(eq : n + suc (toℕ x) ≡ suc (toℕ (raise n x))) → toℕ (raise n x - Fin.cast eq (raise n y)) ≡ toℕ (x - y) + raise‿- m ℕ.zero x zero _ = refl + raise‿- (suc m) ℕ.zero (suc x) (suc y) p = raise‿- m ℕ.zero x y (ℕₚ.suc-injective p) + raise‿- m (suc n) x y p = raise‿- m n x y (ℕₚ.suc-injective p) + + cast‿- : ∀ {m n} (x : Fin m) y .(eq : m ≡ n) → toℕ (Fin.cast eq x - Fin.cast (cong suc (sym (Finₚ.toℕ-cast eq x))) y) ≡ toℕ (x - y) + cast‿- {suc m} {suc n} x zero eq = Finₚ.toℕ-cast eq x + cast‿- {suc m} {suc n} (suc x) (suc y) eq = cast‿- x y (ℕₚ.suc-injective eq) + +-- Instruction semantics + +module _ + (≈ᶻ-trans : Transitive _≈ᶻ_) + (round∘⟦⟧ : ∀ x → x ≈ᶻ round ⟦ x ⟧) + (round-cong : ∀ {x y} → x ≈ʳ y → round x ≈ᶻ round y) + (0#-homo-round : round 0ℝ ≈ᶻ 0ℤ) + (2^n≢0 : ∀ n → False (2ℤ ^ᶻ n ≟ᶻ 0ℤ)) + (*ᶻ-identityʳ : ∀ x → x *ᶻ 1ℤ ≈ᶻ x) + where + + open sliceᶻ ≈ᶻ-trans round∘⟦⟧ round-cong 0#-homo-round 2^n≢0 *ᶻ-identityʳ + + vadd : VAdd.VAdd → Procedure 2 (Beat , ElmtMask , _) + vadd d = declare ⦇ zeros ⦈ (declare (! &Q ⦇ src₁ ⦈ (!# 1)) (label λ + result op₁ beat elmtMask → + [ (λ src₂ → for (toℕ elements) (lift ( + elem (toℕ esize) (&cast (sym e*e≡32) (wknRef result)) (!# 0) ≔ + ⦇ ! elem (toℕ esize) (&cast (sym e*e≡32) (wknRef op₁)) (!# 0) +ᵇ + ! slice (&R ⦇ src₂ ⦈) ⦇ (esize , zero , refl) ⦈ ⦈)) ) + , (λ src₂ → declare (! &Q ⦇ src₂ ⦈ (! beat)) (for (toℕ elements) (lift ( + elem (toℕ esize) (&cast (sym e*e≡32) (wknRef (wknRef result))) (!# 0) ≔ + ⦇ ! elem (toℕ esize) (&cast (sym e*e≡32) (wknRef (wknRef op₁))) (!# 0) +ᵇ + ! elem (toℕ esize) (&cast (sym e*e≡32) (var (# 1))) (!# 0) ⦈)))) + ]′ src₂ ∙ + for 4 (lift ( + if ⦇ (λ x y → does (getᵇ y x ≟ᵇ 1b)) (! wknRef elmtMask) (!# 0) ⦈ + then + elem 8 (&Q ⦇ dest ⦈ (! wknRef beat)) (!# 0) ≔ (! elem 8 (wknRef result) (!# 0)) + else + skip)))) + where + open VAdd.VAdd d + esize = VAdd.esize d + elements = VAdd.elements d + e*e≡32 = VAdd.elem*esize≡32 d |