diff options
Diffstat (limited to 'src/Helium/Semantics')
-rw-r--r-- | src/Helium/Semantics/Denotational/Core.agda | 137 |
1 files changed, 42 insertions, 95 deletions
diff --git a/src/Helium/Semantics/Denotational/Core.agda b/src/Helium/Semantics/Denotational/Core.agda index a644adb..b425252 100644 --- a/src/Helium/Semantics/Denotational/Core.agda +++ b/src/Helium/Semantics/Denotational/Core.agda @@ -182,121 +182,71 @@ module Expression open Code Σ - ⟦_⟧ᵉ : ∀ {n} {Γ : Vec Type n} {t} → Expression Γ t → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ t ⟧ₜ + ⟦_⟧ᵉ : ∀ {n} {Γ : Vec Type n} {t} → Expression Γ t → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ t ⟧ₜ ⟦_⟧ˢ : ∀ {n} {Γ : Vec Type n} → Statement Γ → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ - ⟦_⟧ᶠ : ∀ {n} {Γ : Vec Type n} {ret} → Function Γ ret → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ ret ⟧ₜ + ⟦_⟧ᶠ : ∀ {n} {Γ : Vec Type n} {ret} → Function Γ ret → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ ret ⟧ₜ ⟦_⟧ᵖ : ∀ {n} {Γ : Vec Type n} → Procedure Γ → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ update : ∀ {n Γ t e} → CanAssign {n} {Γ} {t} e → ⟦ t ⟧ₜ → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ - ⟦ lit x ⟧ᵉ σ γ = σ , 𝒦 x - ⟦ state i ⟧ᵉ σ γ = σ , fetch Σ σ (# i) - ⟦_⟧ᵉ {Γ = Γ} (var i) σ γ = σ , fetch Γ γ (# i) - ⟦ abort e ⟧ᵉ σ γ = case P.proj₂ (⟦ e ⟧ᵉ σ γ) of λ () - ⟦ _≟_ {hasEquality = hasEq} e e₁ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - let σ′′ , y = ⟦ e ⟧ᵉ σ′ γ - σ′′ , equal (toWitness hasEq) x y - ⟦ _<?_ {isNumeric = isNum} e e₁ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - let σ′′ , y = ⟦ e ⟧ᵉ σ′ γ - σ′′ , comp (toWitness isNum) x y - ⟦ inv e ⟧ᵉ σ γ = P.map₂ Bool.not (⟦ e ⟧ᵉ σ γ) - ⟦ e && e₁ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - Bool.if x then ⟦ e₁ ⟧ᵉ σ′ γ else σ′ , false - ⟦ e || e₁ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - Bool.if x then σ′ , true else ⟦ e₁ ⟧ᵉ σ′ γ - ⟦ not e ⟧ᵉ σ γ = P.map₂ Bits.¬_ (⟦ e ⟧ᵉ σ γ) - ⟦ e and e₁ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - let σ′′ , y = ⟦ e₁ ⟧ᵉ σ′ γ - σ′′ , x Bits.∧ y - ⟦ e or e₁ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - let σ′′ , y = ⟦ e₁ ⟧ᵉ σ′ γ - σ′′ , x Bits.∨ y - ⟦ [ e ] ⟧ᵉ σ γ = P.map₂ (Vec._∷ []) (⟦ e ⟧ᵉ σ γ) - ⟦ unbox e ⟧ᵉ σ γ = P.map₂ Vec.head (⟦ e ⟧ᵉ σ γ) - ⟦ _∶_ {t = t} e e₁ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - let σ′′ , y = ⟦ e₁ ⟧ᵉ σ′ γ - σ′′ , join t x y - ⟦ slice {t = t} e e₁ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - let σ′′ , y = ⟦ e₁ ⟧ᵉ σ′ γ - σ′′ , sliced t x y - ⟦ cast {t = t} eq e ⟧ᵉ σ γ = P.map₂ (casted t eq) (⟦ e ⟧ᵉ σ γ) - ⟦ -_ {isNumeric = isNum} e ⟧ᵉ σ γ = P.map₂ (neg (toWitness isNum)) (⟦ e ⟧ᵉ σ γ) - ⟦ _+_ {isNumeric₁ = isNum₁} {isNumeric₂ = isNum₂} e e₁ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - let σ′′ , y = ⟦ e₁ ⟧ᵉ σ′ γ - σ′′ , add isNum₁ isNum₂ x y - ⟦ _*_ {isNumeric₁ = isNum₁} {isNumeric₂ = isNum₂} e e₁ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - let σ′′ , y = ⟦ e₁ ⟧ᵉ σ′ γ - σ′′ , mul isNum₁ isNum₂ x y + ⟦ lit x ⟧ᵉ σ γ = 𝒦 x + ⟦ state i ⟧ᵉ σ γ = fetch Σ σ (# i) + ⟦_⟧ᵉ {Γ = Γ} (var i) σ γ = fetch Γ γ (# i) + ⟦ abort e ⟧ᵉ σ γ = case ⟦ e ⟧ᵉ σ γ of λ () + ⟦ _≟_ {hasEquality = hasEq} e e₁ ⟧ᵉ σ γ = equal (toWitness hasEq) (⟦ e ⟧ᵉ σ γ) (⟦ e₁ ⟧ᵉ σ γ) + ⟦ _<?_ {isNumeric = isNum} e e₁ ⟧ᵉ σ γ = comp (toWitness isNum) (⟦ e ⟧ᵉ σ γ) (⟦ e₁ ⟧ᵉ σ γ) + ⟦ inv e ⟧ᵉ σ γ = Bool.not (⟦ e ⟧ᵉ σ γ) + ⟦ e && e₁ ⟧ᵉ σ γ = Bool.if ⟦ e ⟧ᵉ σ γ then ⟦ e₁ ⟧ᵉ σ γ else false + ⟦ e || e₁ ⟧ᵉ σ γ = Bool.if ⟦ e ⟧ᵉ σ γ then true else ⟦ e₁ ⟧ᵉ σ γ + ⟦ not e ⟧ᵉ σ γ = Bits.¬_ (⟦ e ⟧ᵉ σ γ) + ⟦ e and e₁ ⟧ᵉ σ γ = ⟦ e ⟧ᵉ σ γ Bits.∧ ⟦ e₁ ⟧ᵉ σ γ + ⟦ e or e₁ ⟧ᵉ σ γ = ⟦ e ⟧ᵉ σ γ Bits.∨ ⟦ e₁ ⟧ᵉ σ γ + ⟦ [ e ] ⟧ᵉ σ γ = ⟦ e ⟧ᵉ σ γ Vec.∷ [] + ⟦ unbox e ⟧ᵉ σ γ = Vec.head (⟦ e ⟧ᵉ σ γ) + ⟦ _∶_ {t = t} e e₁ ⟧ᵉ σ γ = join t (⟦ e ⟧ᵉ σ γ) (⟦ e₁ ⟧ᵉ σ γ) + ⟦ slice {t = t} e e₁ ⟧ᵉ σ γ = sliced t (⟦ e ⟧ᵉ σ γ) (⟦ e₁ ⟧ᵉ σ γ) + ⟦ cast {t = t} eq e ⟧ᵉ σ γ = casted t eq (⟦ e ⟧ᵉ σ γ) + ⟦ -_ {isNumeric = isNum} e ⟧ᵉ σ γ = neg (toWitness isNum) (⟦ e ⟧ᵉ σ γ) + ⟦ _+_ {isNumeric₁ = isNum₁} {isNumeric₂ = isNum₂} e e₁ ⟧ᵉ σ γ = add isNum₁ isNum₂ (⟦ e ⟧ᵉ σ γ) (⟦ e₁ ⟧ᵉ σ γ) + ⟦ _*_ {isNumeric₁ = isNum₁} {isNumeric₂ = isNum₂} e e₁ ⟧ᵉ σ γ = mul isNum₁ isNum₂ (⟦ e ⟧ᵉ σ γ) (⟦ e₁ ⟧ᵉ σ γ) -- ⟦ e / e₁ ⟧ᵉ σ γ = {!!} - ⟦ _^_ {isNumeric = isNum} e n ⟧ᵉ σ γ = P.map₂ (λ x → pow (toWitness isNum) x n) (⟦ e ⟧ᵉ σ γ) - ⟦ _>>_ e n ⟧ᵉ σ γ = P.map₂ (λ x → shiftr 2≉0 x n) (⟦ e ⟧ᵉ σ γ) - ⟦ rnd e ⟧ᵉ σ γ = P.map₂ ⌊_⌋ (⟦ e ⟧ᵉ σ γ) - ⟦ fin x e ⟧ᵉ σ γ = P.map₂ (apply x) (⟦ e ⟧ᵉ σ γ) + ⟦ _^_ {isNumeric = isNum} e n ⟧ᵉ σ γ = pow (toWitness isNum) (⟦ e ⟧ᵉ σ γ) n + ⟦ _>>_ e n ⟧ᵉ σ γ = shiftr 2≉0 (⟦ e ⟧ᵉ σ γ) n + ⟦ rnd e ⟧ᵉ σ γ = ⌊ ⟦ e ⟧ᵉ σ γ ⌋ + ⟦ fin x e ⟧ᵉ σ γ = apply x (⟦ e ⟧ᵉ σ γ) where apply : ∀ {k ms n} → (All Fin ms → Fin n) → ⟦ Vec.map {n = k} fin ms ⟧ₜ′ → ⟦ fin n ⟧ₜ apply {zero} {[]} f xs = f [] apply {suc k} {_ ∷ ms} f xs = apply (λ x → f (tupHead (Vec.map fin ms) xs ∷ x)) (tupTail (Vec.map fin ms) xs) - ⟦ asInt e ⟧ᵉ σ γ = P.map₂ (λ i → Fin.toℕ i ℤ′.×′ 1ℤ) (⟦ e ⟧ᵉ σ γ) - ⟦ tup [] ⟧ᵉ σ γ = σ , _ + ⟦ asInt e ⟧ᵉ σ γ = Fin.toℕ (⟦ e ⟧ᵉ σ γ) ℤ′.×′ 1ℤ + ⟦ tup [] ⟧ᵉ σ γ = _ ⟦ tup (e ∷ []) ⟧ᵉ σ γ = ⟦ e ⟧ᵉ σ γ - ⟦ tup (e ∷ e′ ∷ es) ⟧ᵉ σ γ = do - let σ′ , v = ⟦ e ⟧ᵉ σ γ - let σ′′ , vs = ⟦ tup (e′ ∷ es) ⟧ᵉ σ′ γ - σ′′ , (v , vs) - ⟦ call f e ⟧ᵉ σ γ = P.uncurry ⟦ f ⟧ᶠ (⟦ e ⟧ᵉ σ γ) - ⟦ if e then e₁ else e₂ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - Bool.if x then ⟦ e₁ ⟧ᵉ σ′ γ else ⟦ e₂ ⟧ᵉ σ′ γ - - ⟦ s ∙ s₁ ⟧ˢ σ γ = do - let σ′ , γ′ = ⟦ s ⟧ˢ σ γ - ⟦ s ⟧ˢ σ′ γ′ + ⟦ tup (e ∷ e′ ∷ es) ⟧ᵉ σ γ = ⟦ e ⟧ᵉ σ γ , ⟦ tup (e′ ∷ es) ⟧ᵉ σ γ + ⟦ call f e ⟧ᵉ σ γ = ⟦ f ⟧ᶠ σ (⟦ e ⟧ᵉ σ γ) + ⟦ if e then e₁ else e₂ ⟧ᵉ σ γ = Bool.if ⟦ e ⟧ᵉ σ γ then ⟦ e₁ ⟧ᵉ σ γ else ⟦ e₂ ⟧ᵉ σ γ + + ⟦ s ∙ s₁ ⟧ˢ σ γ = P.uncurry ⟦ s ⟧ˢ (⟦ s ⟧ˢ σ γ) ⟦ skip ⟧ˢ σ γ = σ , γ - ⟦ _≔_ ref {canAssign = canAssign} e ⟧ˢ σ γ = do - let σ′ , v = ⟦ e ⟧ᵉ σ γ - update (toWitness canAssign) v σ′ γ - ⟦_⟧ˢ {Γ = Γ} (declare e s) σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - let σ′′ , γ′ = ⟦ s ⟧ˢ σ′ (tupCons Γ x γ) - σ′′ , tupTail Γ γ′ - ⟦ invoke p e ⟧ˢ σ γ = do - let σ′ , v = ⟦ e ⟧ᵉ σ γ - ⟦ p ⟧ᵖ σ′ v , γ - ⟦ if e then s₁ else s₂ ⟧ˢ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - Bool.if x then ⟦ s₁ ⟧ˢ σ′ γ else ⟦ s₂ ⟧ˢ σ′ γ + ⟦ _≔_ ref {canAssign = canAssign} e ⟧ˢ σ γ = update (toWitness canAssign) (⟦ e ⟧ᵉ σ γ) σ γ + ⟦_⟧ˢ {Γ = Γ} (declare e s) σ γ = P.map₂ (tupTail Γ) (⟦ s ⟧ˢ σ (tupCons Γ (⟦ e ⟧ᵉ σ γ) γ)) + ⟦ invoke p e ⟧ˢ σ γ = ⟦ p ⟧ᵖ σ (⟦ e ⟧ᵉ σ γ) , γ + ⟦ if e then s₁ else s₂ ⟧ˢ σ γ = Bool.if ⟦ e ⟧ᵉ σ γ then ⟦ s₁ ⟧ˢ σ γ else ⟦ s₂ ⟧ˢ σ γ ⟦_⟧ˢ {Γ = Γ} (for m s) σ γ = helper m ⟦ s ⟧ˢ σ γ where helper : ∀ m → (⟦ Σ ⟧ₜ′ → ⟦ fin m ∷ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ fin m ∷ Γ ⟧ₜ′) → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ helper zero s σ γ = σ , γ - helper (suc m) s σ γ with s σ (tupCons Γ zero γ) - ... | σ′ , γ′ = helper m s′ σ′ (tupTail Γ γ′) + helper (suc m) s σ γ = P.uncurry (helper m s′) (P.map₂ (tupTail Γ) (s σ (tupCons Γ zero γ))) where s′ : ⟦ Σ ⟧ₜ′ → ⟦ fin m ∷ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ fin m ∷ Γ ⟧ₜ′ s′ σ γ = P.map₂ (tupCons Γ (tupHead Γ γ) ∘′ (tupTail Γ)) (s σ (tupCons Γ (suc (tupHead Γ γ)) (tupTail Γ γ))) - ⟦ s ∙return e ⟧ᶠ σ γ with ⟦ s ⟧ˢ σ γ - ... | σ′ , γ′ = ⟦ e ⟧ᵉ σ′ γ′ - ⟦_⟧ᶠ {Γ = Γ} (declare e f) σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - ⟦ f ⟧ᶠ σ′ (tupCons Γ x γ) + ⟦ s ∙return e ⟧ᶠ σ γ = P.uncurry ⟦ e ⟧ᵉ (⟦ s ⟧ˢ σ γ) + ⟦_⟧ᶠ {Γ = Γ} (declare e f) σ γ = ⟦ f ⟧ᶠ σ (tupCons Γ (⟦ e ⟧ᵉ σ γ) γ) ⟦ s ∙end ⟧ᵖ σ γ = P.proj₁ (⟦ s ⟧ˢ σ γ) - ⟦_⟧ᵖ {Γ = Γ} (declare e p) σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - ⟦ p ⟧ᵖ σ′ (tupCons Γ x γ) + ⟦_⟧ᵖ {Γ = Γ} (declare e p) σ γ = ⟦ p ⟧ᵖ σ (tupCons Γ (⟦ e ⟧ᵉ σ γ) γ) update (state i {i<o}) v σ γ = updateAt Σ (#_ i {m<n = i<o}) v σ , γ update {Γ = Γ} (var i {i<n}) v σ γ = σ , updateAt Γ (#_ i {m<n = i<n}) v γ @@ -306,10 +256,7 @@ module Expression update e₁ (sliced t (casted t (ℕₚ.+-comm _ m) v) zero) σ′ γ′ update [ e ] v σ γ = update e (Vec.head v) σ γ update (unbox e) v σ γ = update e (v ∷ []) σ γ - update (slice {t = t} {e₁ = e₁} a e₂) v σ γ = do - let σ′ , off = ⟦ e₂ ⟧ᵉ σ γ - let σ′′ , orig = ⟦ e₁ ⟧ᵉ σ′ γ - updateSliced t orig off v (λ v → update a v σ′′ γ) + update (slice {t = t} {e₁ = e₁} a e₂) v σ γ = updateSliced t (⟦ e₁ ⟧ᵉ σ γ) (⟦ e₂ ⟧ᵉ σ γ) v (λ v → update a v σ γ) update (cast {t = t} eq e) v σ γ = update e (casted t (≡.sym eq) v) σ γ update (tup {es = []} x) v σ γ = σ , γ update (tup {es = _ ∷ []} (x ∷ [])) v σ γ = update x v σ γ |