diff options
Diffstat (limited to 'src/Helium/Semantics')
-rw-r--r-- | src/Helium/Semantics/Axiomatic/Assertion.agda | 148 |
1 files changed, 148 insertions, 0 deletions
diff --git a/src/Helium/Semantics/Axiomatic/Assertion.agda b/src/Helium/Semantics/Axiomatic/Assertion.agda new file mode 100644 index 0000000..70feb2b --- /dev/null +++ b/src/Helium/Semantics/Axiomatic/Assertion.agda @@ -0,0 +1,148 @@ +------------------------------------------------------------------------ +-- Agda Helium +-- +-- Definition of assertions used in correctness triples +------------------------------------------------------------------------ + +{-# OPTIONS --safe --without-K #-} + +open import Helium.Data.Pseudocode.Types using (RawPseudocode) + +module Helium.Semantics.Axiomatic.Assertion + {b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃} + (rawPseudocode : RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃) + where + +open RawPseudocode rawPseudocode + +open import Data.Bool as Bool using (Bool) +open import Data.Fin as Fin using (suc) +open import Data.Fin.Patterns +open import Data.Nat using (ℕ; suc) +open import Data.Product using (proj₁; proj₂) +open import Data.Vec as Vec using (Vec; []; _∷_; _++_) +open import Data.Vec.Relation.Unary.All as All using (All; []; _∷_) +open import Helium.Data.Pseudocode.Core +open import Helium.Semantics.Axiomatic.Core rawPseudocode +open import Helium.Semantics.Axiomatic.Term rawPseudocode as Term using (Term) +open import Level using (_⊔_; lift) +open import Relation.Nullary using (does) + +private + variable + t t′ : Type + m n o : ℕ + Γ Δ Σ ts : Vec Type m + +infixl 7 _[_]↦_ + +open Term.Term + +data Assertion (Σ : Vec Type o) (Γ : Vec Type n) (Δ : Vec Type m) : Set (b₁ ⊔ i₁ ⊔ r₁) where + _[_]↦_ : ∀ {m t} → Term Σ Γ Δ (asType t m) → Term Σ Γ Δ (fin m) → Term Σ Γ Δ (elemType t) → Assertion Σ Γ Δ + all : Assertion Σ Γ (t ∷ Δ) → Assertion Σ Γ Δ + some : Assertion Σ Γ (t ∷ Δ) → Assertion Σ Γ Δ + pred : Term Σ Γ Δ bool → Assertion Σ Γ Δ + comb : ∀ {n} → (Vec Bool n → Bool) → Vec (Assertion Σ Γ Δ) n → Assertion Σ Γ Δ + +elimVar : Assertion Σ (t ∷ Γ) Δ → Term Σ Γ Δ t → Assertion Σ Γ Δ +elimVar (ref [ i ]↦ val) t = Term.elimVar ref t [ Term.elimVar i t ]↦ Term.elimVar val t +elimVar (all P) t = all (elimVar P (Term.wknMeta t)) +elimVar (some P) t = some (elimVar P (Term.wknMeta t)) +elimVar (pred p) t = pred (Term.elimVar p t) +elimVar (comb f Ps) t = comb f (helper Ps t) + where + helper : ∀ {n} → Vec (Assertion Σ (_ ∷ Γ) Δ) n → Term Σ Γ Δ _ → Vec (Assertion Σ Γ Δ) n + helper [] t = [] + helper (P ∷ Ps) t = elimVar P t ∷ helper Ps t + +wknVar : Assertion Σ Γ Δ → Assertion Σ (t ∷ Γ) Δ +wknVar (ref [ i ]↦ val) = Term.wknVar ref [ Term.wknVar i ]↦ Term.wknVar val +wknVar (all P) = all (wknVar P) +wknVar (some P) = some (wknVar P) +wknVar (pred p) = pred (Term.wknVar p) +wknVar (comb f Ps) = comb f (helper Ps) + where + helper : ∀ {n} → Vec (Assertion Σ Γ Δ) n → Vec (Assertion Σ (_ ∷ Γ) Δ) n + helper [] = [] + helper (P ∷ Ps) = wknVar P ∷ helper Ps + +wknVars : (ts : Vec Type n) → Assertion Σ Γ Δ → Assertion Σ (ts ++ Γ) Δ +wknVars τs (ref [ i ]↦ val) = Term.wknVars τs ref [ Term.wknVars τs i ]↦ Term.wknVars τs val +wknVars τs (all P) = all (wknVars τs P) +wknVars τs (some P) = some (wknVars τs P) +wknVars τs (pred p) = pred (Term.wknVars τs p) +wknVars τs (comb f Ps) = comb f (helper Ps) + where + helper : ∀ {n} → Vec (Assertion Σ Γ Δ) n → Vec (Assertion Σ (τs ++ Γ) Δ) n + helper [] = [] + helper (P ∷ Ps) = wknVars τs P ∷ helper Ps + +addVars : Assertion Σ [] Δ → Assertion Σ Γ Δ +addVars (ref [ i ]↦ val) = Term.addVars ref [ Term.addVars i ]↦ Term.addVars val +addVars (all P) = all (addVars P) +addVars (some P) = some (addVars P) +addVars (pred p) = pred (Term.addVars p) +addVars (comb f Ps) = comb f (helper Ps) + where + helper : ∀ {n} → Vec (Assertion Σ [] Δ) n → Vec (Assertion Σ Γ Δ) n + helper [] = [] + helper (P ∷ Ps) = addVars P ∷ helper Ps + +wknMetaAt : ∀ i → Assertion Σ Γ Δ → Assertion Σ Γ (Vec.insert Δ i t) +wknMetaAt i (ref [ j ]↦ val) = Term.wknMetaAt i ref [ Term.wknMetaAt i j ]↦ Term.wknMetaAt i val +wknMetaAt i (all P) = all (wknMetaAt (suc i) P) +wknMetaAt i (some P) = some (wknMetaAt (suc i) P) +wknMetaAt i (pred p) = pred (Term.wknMetaAt i p) +wknMetaAt i (comb f Ps) = comb f (helper i Ps) + where + helper : ∀ {n} i → Vec (Assertion Σ Γ Δ) n → Vec (Assertion Σ Γ (Vec.insert Δ i _)) n + helper i [] = [] + helper i (P ∷ Ps) = wknMetaAt i P ∷ helper i Ps + +-- NOTE: better to induct on P instead of ts? +wknMetas : (ts : Vec Type n) → Assertion Σ Γ Δ → Assertion Σ Γ (ts ++ Δ) +wknMetas [] P = P +wknMetas (_ ∷ ts) P = wknMetaAt 0F (wknMetas ts P) + +module _ (2≉0 : Term.2≉0) where + -- NOTE: better to induct on e here than in Term? + subst : Assertion Σ Γ Δ → {e : Code.Expression Σ Γ t} → Code.CanAssign Σ e → Term Σ Γ Δ t → Assertion Σ Γ Δ + subst (ref [ i ]↦ val) e t = Term.subst 2≉0 ref e t [ Term.subst 2≉0 i e t ]↦ Term.subst 2≉0 val e t + subst (all P) e t = all (subst P e (Term.wknMeta t)) + subst (some P) e t = some (subst P e (Term.wknMeta t)) + subst (pred p) e t = pred (Term.subst 2≉0 p e t) + subst (comb f Ps) e t = comb f (helper Ps e t) + where + helper : ∀ {t n} → Vec (Assertion Σ Γ Δ) n → {e : Code.Expression Σ Γ t} → Code.CanAssign Σ e → Term Σ Γ Δ t → Vec (Assertion Σ Γ Δ) n + helper [] e t = [] + helper (P ∷ Ps) e t = subst P e t ∷ helper Ps e t + +module Construct where + infixl 6 _∧_ + infixl 5 _∨_ + + true : Assertion Σ Γ Δ + true = comb (λ _ → Bool.true) [] + + false : Assertion Σ Γ Δ + false = comb (λ _ → Bool.false) [] + + _∧_ : Assertion Σ Γ Δ → Assertion Σ Γ Δ → Assertion Σ Γ Δ + P ∧ Q = comb (λ { (p ∷ q ∷ []) → p Bool.∧ q }) (P ∷ Q ∷ []) + + _∨_ : Assertion Σ Γ Δ → Assertion Σ Γ Δ → Assertion Σ Γ Δ + P ∨ Q = comb (λ { (p ∷ q ∷ []) → p Bool.∨ q }) (P ∷ Q ∷ []) + + equal : Term Σ Γ Δ t → Term Σ Γ Δ t → Assertion Σ Γ Δ + equal {t = bool} x y = pred Term.[ bool ][ x ≟ y ] + equal {t = int} x y = pred Term.[ int ][ x ≟ y ] + equal {t = fin n} x y = pred Term.[ fin ][ x ≟ y ] + equal {t = real} x y = pred Term.[ real ][ x ≟ y ] + equal {t = bit} x y = pred Term.[ bit ][ x ≟ y ] + equal {t = bits n} x y = pred Term.[ bits n ][ x ≟ y ] + equal {t = tuple _ []} x y = true + equal {t = tuple _ (t ∷ ts)} x y = equal {t = t} (Term.func₁ proj₁ x) (Term.func₁ proj₁ y) ∧ equal (Term.func₁ proj₂ x) (Term.func₁ proj₂ y) + equal {t = array t n} x y = all (some (Term.wknMeta (Term.wknMeta x) [ meta 1F ]↦ meta 0F ∧ Term.wknMeta (Term.wknMeta y) [ meta 1F ]↦ meta 0F)) + +open Construct public |