summaryrefslogtreecommitdiff
path: root/src/Helium/Semantics
diff options
context:
space:
mode:
Diffstat (limited to 'src/Helium/Semantics')
-rw-r--r--src/Helium/Semantics/Denotational.agda310
-rw-r--r--src/Helium/Semantics/Denotational/Core.agda128
2 files changed, 0 insertions, 438 deletions
diff --git a/src/Helium/Semantics/Denotational.agda b/src/Helium/Semantics/Denotational.agda
deleted file mode 100644
index 8e521ea..0000000
--- a/src/Helium/Semantics/Denotational.agda
+++ /dev/null
@@ -1,310 +0,0 @@
-------------------------------------------------------------------------
--- Agda Helium
---
--- Denotational semantics of Armv8-M instructions.
-------------------------------------------------------------------------
-
-{-# OPTIONS --safe --without-K #-}
-
-open import Helium.Data.Pseudocode.Types
-
-module Helium.Semantics.Denotational
- {b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃}
- (pseudocode : RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃)
- where
-
-open import Algebra.Core using (Op₂)
-open import Data.Bool as Bool using (Bool; true; false)
-open import Data.Fin as Fin hiding (cast; lift; _+_)
-import Data.Fin.Properties as Finₚ
-import Data.List as List
-open import Data.Nat hiding (_⊔_)
-import Data.Nat.Properties as ℕₚ
-open import Data.Product using (∃; _×_; _,_; dmap)
-open import Data.Sum using ([_,_]′)
-open import Data.Vec.Functional as V using (Vector; []; _∷_)
-open import Function using (_|>_; _$_; _∘₂_)
-open import Function.Nary.NonDependent.Base
-import Helium.Instructions as Instr
-import Helium.Semantics.Denotational.Core as Core
-open import Level using (Level; _⊔_)
-open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong)
-open import Relation.Nullary using (does)
-open import Relation.Nullary.Decidable
-
-open RawPseudocode pseudocode
-
-private
- ℓ : Level
- ℓ = b₁
-
-record State : Set ℓ where
- field
- S : Vector (Bits 32) 32
- R : Vector (Bits 32) 16
- P0 : Bits 16
- mask : Bits 8
- QC : Bit
- advanceVPT : Bool
-
-open Core State
-
-Beat : Set
-Beat = Fin 4
-
-hilow : Beat → Fin 2
-hilow zero = zero
-hilow (suc zero) = zero
-hilow (suc (suc _)) = suc zero
-
-oddeven : Beat → Fin 2
-oddeven zero = zero
-oddeven (suc zero) = suc zero
-oddeven (suc (suc zero)) = zero
-oddeven (suc (suc (suc zero))) = suc zero
-
-ElmtMask : Set b₁
-ElmtMask = Bits 4
-
--- State properties
-
-&R : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ (Fin 16) → Reference n Γ (Bits 32)
-&R e = record
- { get = λ σ ρ → State.R σ (e σ ρ)
- ; set = λ x σ ρ → record σ { R = V.updateAt (e σ ρ) (λ _ → x) (State.R σ) } , ρ
- }
-
-&S : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ (Fin 32) → Reference n Γ (Bits 32)
-&S e = record
- { get = λ σ ρ → State.S σ (e σ ρ)
- ; set = λ x σ ρ → record σ { S = V.updateAt (e σ ρ) (λ _ → x) (State.S σ) } , ρ
- }
-
-&Q : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ Instr.VecReg → Expr n Γ Beat → Reference n Γ (Bits 32)
-&Q reg beat = &S λ σ ρ → combine (reg σ ρ) (beat σ ρ)
-
-&FPSCR-QC : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ Bit
-&FPSCR-QC = record
- { get = λ σ ρ → State.QC σ
- ; set = λ x σ ρ → record σ { QC = x } , ρ
- }
-
-&VPR-P0 : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ (Bits 16)
-&VPR-P0 = record
- { get = λ σ ρ → State.P0 σ
- ; set = λ x σ ρ → record σ { P0 = x } , ρ
- }
-
-&VPR-mask : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ (Bits 8)
-&VPR-mask = record
- { get = λ σ ρ → State.mask σ
- ; set = λ x σ ρ → record σ { mask = x } , ρ
- }
-
-&AdvanceVPT : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ Bool
-&AdvanceVPT = record
- { get = λ σ ρ → State.advanceVPT σ
- ; set = λ x σ ρ → record σ { advanceVPT = x } , ρ
- }
-
--- Reference properties
-
-&cast : ∀ {k m n ls} {Γ : Sets n ls} → .(eq : k ≡ m) → Reference n Γ (Bits k) → Reference n Γ (Bits m)
-&cast eq &v = record
- { get = λ σ ρ → cast eq (Reference.get &v σ ρ)
- ; set = λ x σ ρ → Reference.set &v (cast (sym eq) x) σ ρ
- }
-
-slice : ∀ {k m n ls} {Γ : Sets n ls} → Reference n Γ (Bits m) → Expr n Γ (∃ λ (i : Fin (suc m)) → ∃ λ j → toℕ (i - j) ≡ k) → Reference n Γ (Bits k)
-slice &v idx = record
- { get = λ σ ρ → let (i , j , i-j≡k) = idx σ ρ in cast i-j≡k (sliceᵇ i j (Reference.get &v σ ρ))
- ; set = λ v σ ρ →
- let (i , j , i-j≡k) = idx σ ρ in
- Reference.set &v (updateᵇ i j (cast (sym (i-j≡k)) v) (Reference.get &v σ ρ)) σ ρ
- }
-
-elem : ∀ {k n ls} {Γ : Sets n ls} m → Reference n Γ (Bits (k * m)) → Expr n Γ (Fin k) → Reference n Γ (Bits m)
-elem m &v idx = slice &v (λ σ ρ → helper _ _ (idx σ ρ))
- where
- helper : ∀ m n → Fin m → ∃ λ (i : Fin (suc (m * n))) → ∃ λ j → toℕ (i - j) ≡ n
- helper (suc m) n zero = inject+ (m * n) (fromℕ n) , # 0 , eq
- where
- eq = trans (sym (Finₚ.toℕ-inject+ (m * n) (fromℕ n))) (Finₚ.toℕ-fromℕ n)
- helper (suc m) n (suc i) with x , y , x-y≡n ← helper m n i =
- u ,
- v ,
- trans
- (cast‿- (raise n x) (Fin.cast eq₂ (raise n y)) eq₁)
- (trans (raise‿- (suc (m * n)) n x y eq₂) x-y≡n)
- where
- eq₁ = ℕₚ.+-suc n (m * n)
- eq₂ = trans (ℕₚ.+-suc n (toℕ x)) (cong suc (sym (Finₚ.toℕ-raise n x)))
- eq₂′ = cong suc (sym (Finₚ.toℕ-cast eq₁ (raise n x)))
- u = Fin.cast eq₁ (raise n x)
- v = Fin.cast eq₂′ (Fin.cast eq₂ (raise n y))
-
- raise‿- : ∀ m n (x : Fin m) y .(eq : n + suc (toℕ x) ≡ suc (toℕ (raise n x))) → toℕ (raise n x - Fin.cast eq (raise n y)) ≡ toℕ (x - y)
- raise‿- m ℕ.zero x zero _ = refl
- raise‿- (suc m) ℕ.zero (suc x) (suc y) p = raise‿- m ℕ.zero x y (ℕₚ.suc-injective p)
- raise‿- m (suc n) x y p = raise‿- m n x y (ℕₚ.suc-injective p)
-
- cast‿- : ∀ {m n} (x : Fin m) y .(eq : m ≡ n) → toℕ (Fin.cast eq x - Fin.cast (cong suc (sym (Finₚ.toℕ-cast eq x))) y) ≡ toℕ (x - y)
- cast‿- {suc m} {suc n} x zero eq = Finₚ.toℕ-cast eq x
- cast‿- {suc m} {suc n} (suc x) (suc y) eq = cast‿- x y (ℕₚ.suc-injective eq)
-
--- General functions
-
-copyMasked : Instr.VecReg → Procedure 3 (Bits 32 , Beat , ElmtMask , _)
-copyMasked dest =
- for 4 (
- -- 0:e 1:result 2:beat 3:elmtMask
- if ⦇ hasBit (!# 0) (!# 3) ⦈
- then
- elem 8 (&Q ⦇ dest ⦈ (!# 2)) (!# 0) ≔ ! elem 8 (var (# 1)) (!# 0)
- else skip)
- ∙end
-
-module fun-sliceᶻ
- (1<<n≉0 : ∀ n → False ((1ℤ << n) /1 ≟ʳ 0ℝ))
- where
-
- open ShiftNotZero 1<<n≉0
-
- signedSatQ : ∀ n → Function 1 (ℤ , _) (Bits (suc n) × Bool)
- signedSatQ n = declare ⦇ true ⦈ $
- -- 0:sat 1:x
- if ⦇ (λ i → does ((1ℤ << n) ℤ.+ ℤ.- 1ℤ <ᶻ? i)) (!# 1) ⦈
- then
- var (# 1) ≔ ⦇ ((1ℤ << n) ℤ.+ ℤ.- 1ℤ) ⦈
- else if ⦇ (λ i → does (ℤ.- 1ℤ << n <ᶻ? i)) (!# 1) ⦈
- then
- var (# 1) ≔ ⦇ (ℤ.- 1ℤ << n) ⦈
- else
- var (# 0) ≔ ⦇ false ⦈
- ∙return ⦇ ⦇ (sliceᶻ (suc n) zero) (!# 1) ⦈ , (!# 0) ⦈
-
-advanceVPT : Procedure 1 (Beat , _)
-advanceVPT = declare (! elem 4 &VPR-mask (hilow ∘₂ !# 0)) $
- -- 0:vptState 1:beat
- if ⦇ (λ x → does (x ≟ᵇ 1𝔹 ∷ zeros)) (!# 0) ⦈
- then
- var (# 0) ≔ ⦇ zeros ⦈
- else if ⦇ (λ x → does (x ≟ᵇ zeros)) (!# 0) ⦈
- then skip
- else (
- if ⦇ (hasBit (# 3)) (!# 0) ⦈
- then
- elem 4 &VPR-P0 (!# 1) ⟵ (Bits.¬_)
- else skip ∙
- (var (# 0) ⟵ λ x → sliceᵇ (# 3) zero x V.++ 0𝔹 ∷ [])) ∙
- if ⦇ (λ x → does (oddeven x Finₚ.≟ # 1)) (!# 1) ⦈
- then
- elem 4 &VPR-mask (hilow ∘₂ !# 1) ≔ !# 0
- else skip
- ∙end
-
-execBeats : Procedure 2 (Beat , ElmtMask , _) → Procedure 0 _
-execBeats inst = declare ⦇ ones ⦈ $
- for 4 (
- -- 0:beat 1:elmtMask
- if ⦇ (λ x → does (x ≟ᵇ zeros)) (! elem 4 &VPR-mask (hilow ∘₂ !# 0)) ⦈
- then
- var (# 1) ≔ ⦇ ones ⦈
- else
- var (# 1) ≔ ! elem 4 &VPR-P0 (!# 0) ∙
- &AdvanceVPT ≔ ⦇ true ⦈ ∙
- invoke inst ⦇ !# 0 , !# 1 ⦈ ∙
- if ! &AdvanceVPT
- then
- invoke advanceVPT (!# 0)
- else skip)
- ∙end
-
-module _
- (d : Instr.VecOp₂)
- where
-
- open Instr.VecOp₂ d
-
- vec-op₂ : Op₂ (Bits (toℕ esize)) → Procedure 2 (Beat , ElmtMask , _)
- vec-op₂ op = declare ⦇ zeros ⦈ $ declare (! &Q ⦇ src₁ ⦈ (!# 1)) $
- for (toℕ elements) (
- -- 0:e 1:op₁ 2:result 3:beat 4:elmntMask
- elem (toℕ esize) (&cast (sym e*e≡32) (var (# 2))) (!# 0) ≔
- (⦇ op
- (! elem (toℕ esize) (&cast (sym e*e≡32) (var (# 1))) (!# 0))
- ([ (λ src₂ → ! slice (&R ⦇ src₂ ⦈) ⦇ (esize , zero , refl) ⦈)
- , (λ src₂ → ! elem (toℕ esize) (&cast (sym e*e≡32) (&Q ⦇ src₂ ⦈ (!# 3))) (!# 0))
- ]′ src₂) ⦈)) ∙
- invoke (copyMasked dest) ⦇ !# 1 , ⦇ !# 2 , !# 3 ⦈ ⦈
- ∙end
-
--- Instruction semantics
-
-module _
- (1<<n≉0 : ∀ n → False ((1ℤ << n) /1 ≟ʳ 0ℝ))
- where
-
- open ShiftNotZero 1<<n≉0
- open fun-sliceᶻ 1<<n≉0
-
- vadd : Instr.VAdd → Procedure 2 (Beat , ElmtMask , _)
- vadd d = vec-op₂ d (λ x y → sliceᶻ _ zero (uint x ℤ.+ uint y))
-
- vsub : Instr.VSub → Procedure 2 (Beat , ElmtMask , _)
- vsub d = vec-op₂ d (λ x y → sliceᶻ _ zero (uint x ℤ.+ ℤ.- uint y))
-
- vhsub : Instr.VHSub → Procedure 2 (Beat , ElmtMask , _)
- vhsub d = vec-op₂ op₂ (λ x y → sliceᶻ _ (suc zero) (int x ℤ.+ ℤ.- int y))
- where open Instr.VHSub d ; int = Bool.if unsigned then uint else sint
-
- vmul : Instr.VMul → Procedure 2 (Beat , ElmtMask , _)
- vmul d = vec-op₂ d (λ x y → sliceᶻ _ zero (sint x ℤ.* sint y))
-
- vmulh : Instr.VMulH → Procedure 2 (Beat , ElmtMask , _)
- vmulh d = vec-op₂ op₂ (λ x y → cast (eq _ esize) (sliceᶻ 2esize esize′ (int x ℤ.* int y ℤ.+ rval)))
- where
- open Instr.VMulH d
- int = Bool.if unsigned then uint else sint
- rval = Bool.if rounding then 1ℤ << toℕ esize-1 else 0ℤ
- 2esize = toℕ esize + toℕ esize
- esize′ = inject+ _ (strengthen esize)
- eq : ∀ {n} m (i : Fin n) → toℕ i + m ℕ-ℕ inject+ m (strengthen i) ≡ m
- eq m zero = refl
- eq m (suc i) = eq m i
-
- vqdmulh : Instr.VQDMulH → Procedure 2 (Beat , ElmtMask , _)
- vqdmulh d = declare ⦇ zeros ⦈ $ declare (! &Q ⦇ src₁ ⦈ (!# 1)) $ declare ⦇ false ⦈ $
- for (toℕ elements) (
- -- 0:e 1:sat 2:op₁ 3:result 4:beat 5:elmntMask
- elem (toℕ esize) (&cast (sym e*e≡32) (var (# 3))) (!# 0) ,′ var (# 1) ≔
- call (signedSatQ (toℕ esize-1))
- ⦇ (λ x y → (2ℤ ℤ.* sint x ℤ.* sint y ℤ.+ rval) >> toℕ esize)
- (! elem (toℕ esize) (&cast (sym e*e≡32) (var (# 2))) (!# 0))
- ([ (λ src₂ → ! slice (&R ⦇ src₂ ⦈) ⦇ (esize , zero , refl) ⦈)
- , (λ src₂ → ! elem (toℕ esize) (&cast (sym e*e≡32) (&Q ⦇ src₂ ⦈ (!# 4))) (!# 0))
- ]′ src₂) ⦈ ∙
- if !# 1
- then if ⦇ (λ m e → hasBit (combine e zero) (cast (sym e*e>>3≡4) m)) (!# 5) (!# 0) ⦈
- then
- &FPSCR-QC ≔ ⦇ 1𝔹 ⦈
- else skip
- else skip) ∙
- invoke (copyMasked dest) ⦇ !# 2 , ⦇ !# 3 , !# 4 ⦈ ⦈
- ∙end
- where
- open Instr.VQDMulH d
- rval = Bool.if rounding then 1ℤ << toℕ esize-1 else 0ℤ
-
- ⟦_⟧₁ : Instr.Instruction → Procedure 0 _
- ⟦ Instr.vadd x ⟧₁ = execBeats (vadd x)
- ⟦ Instr.vsub x ⟧₁ = execBeats (vsub x)
- ⟦ Instr.vmul x ⟧₁ = execBeats (vmul x)
- ⟦ Instr.vmulh x ⟧₁ = execBeats (vmulh x)
- ⟦ Instr.vqdmulh x ⟧₁ = execBeats (vqdmulh x)
-
- open List using (List; []; _∷_)
-
- ⟦_⟧ : List (Instr.Instruction) → Procedure 0 _
- ⟦ [] ⟧ = skip ∙end
- ⟦ i ∷ is ⟧ = invoke ⟦ i ⟧₁ ⦇ _ ⦈ ∙ invoke ⟦ is ⟧ ⦇ _ ⦈ ∙end
diff --git a/src/Helium/Semantics/Denotational/Core.agda b/src/Helium/Semantics/Denotational/Core.agda
deleted file mode 100644
index 9b6a3c8..0000000
--- a/src/Helium/Semantics/Denotational/Core.agda
+++ /dev/null
@@ -1,128 +0,0 @@
-------------------------------------------------------------------------
--- Agda Helium
---
--- Base definitions for the denotational semantics.
-------------------------------------------------------------------------
-
-{-# OPTIONS --safe --without-K #-}
-
-module Helium.Semantics.Denotational.Core
- {ℓ′}
- (State : Set ℓ′)
- where
-
-open import Algebra.Core
-open import Data.Bool as Bool using (Bool)
-open import Data.Fin hiding (lift)
-open import Data.Nat using (ℕ; zero; suc)
-import Data.Nat.Properties as ℕₚ
-open import Data.Product hiding (_<*>_; _,′_)
-open import Data.Product.Nary.NonDependent
-open import Data.Sum using (_⊎_; inj₁; inj₂; fromInj₂; [_,_]′)
-open import Data.Unit using (⊤)
-open import Level renaming (suc to ℓsuc) hiding (zero)
-open import Function using (_∘_; _∘₂_; _|>_)
-open import Function.Nary.NonDependent.Base
-open import Relation.Nullary.Decidable using (True)
-
-private
- variable
- ℓ ℓ₁ ℓ₂ : Level
- τ τ′ : Set ℓ
-
- update : ∀ {n ls} {Γ : Sets n ls} i → Projₙ Γ i → Product⊤ n Γ → Product⊤ n Γ
- update zero y (_ , xs) = y , xs
- update (suc i) y (x , xs) = x , update i y xs
-
-Expr : ∀ n {ls} → Sets n ls → Set ℓ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′)
-Expr n Γ τ = (σ : State) → (ρ : Product⊤ n Γ) → τ
-
-record Reference n {ls} (Γ : Sets n ls) (τ : Set ℓ) : Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′) where
- field
- get : Expr n Γ τ
- set : τ → Expr n Γ (State × Product⊤ n Γ)
-
-Function : ∀ n {ls} → Sets n ls → Set ℓ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′)
-Function n Γ τ = Expr n Γ τ
-
-Procedure : ∀ n {ls} → Sets n ls → Set (⨆ n ls ⊔ ℓ′)
-Procedure n Γ = Expr n Γ State
-
-Statement : ∀ n {ls} → Sets n ls → Set ℓ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′)
-Statement n Γ τ = Expr n Γ (State × (Product⊤ n Γ ⊎ τ))
-
--- Expressions
-
-pure : ∀ {n ls} {Γ : Sets n ls} → τ → Expr n Γ τ
-pure v σ ρ = v
-
-_<*>_ : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ (τ → τ′) → Expr n Γ τ → Expr n Γ τ′
-_<*>_ f e σ ρ = f σ ρ |> λ f → f (e σ ρ)
-
-!_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Expr n Γ τ
-! r = Reference.get r
-
-call : ∀ {m n ls₁ ls₂} {Γ : Sets m ls₁} {Δ : Sets n ls₂} → Function m Γ τ → Expr n Δ (Product m Γ) → Expr n Δ τ
-call f e σ ρ = e σ ρ |> toProduct⊤ _ |> f σ
-
-declare : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ τ → Expr (suc n) (τ , Γ) τ′ → Expr n Γ τ′
-declare e s σ ρ = e σ ρ |> _, ρ |> s σ
-
--- References
-
-var : ∀ {n ls} {Γ : Sets n ls} i → Reference n Γ (Projₙ Γ i)
-var i = record
- { get = λ σ ρ → projₙ _ i (toProduct _ ρ)
- ; set = λ v → curry (map₂ (update i v))
- }
-
-!#_ : ∀ {n ls} {Γ : Sets n ls} m {m<n : True (suc m ℕₚ.≤? n)} → Expr n Γ (Projₙ Γ (#_ m {n} {m<n}))
-(!# m) {m<n} = ! var (#_ m {m<n = m<n})
-
-_,′_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Reference n Γ τ′ → Reference n Γ (τ × τ′)
-&x ,′ &y = record
- { get = λ σ ρ → Reference.get &x σ ρ , Reference.get &y σ ρ
- ; set = λ (x , y) σ ρ → uncurry (Reference.set &y y) (Reference.set &x x σ ρ)
- }
-
--- Statements
-
-infixl 1 _∙_ _∙return_
-infix 1 _∙end
-infixl 2 if_then_else_
-infix 4 _≔_ _⟵_
-
-skip : ∀ {n ls} {Γ : Sets n ls} → Statement n Γ τ
-skip σ ρ = σ , inj₁ ρ
-
-invoke : ∀ {m n ls₁ ls₂} {Γ : Sets m ls₁} {Δ : Sets n ls₂} → Procedure m Γ → Expr n Δ (Product m Γ) → Statement n Δ τ
-invoke f e σ ρ = call f e σ ρ |> _, inj₁ ρ
-
-_≔_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Expr n Γ τ → Statement n Γ τ′
-(&x ≔ e) σ ρ = e σ ρ |> λ x → Reference.set &x x σ ρ |> map₂ inj₁
-
-_⟵_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Op₁ τ → Statement n Γ τ′
-&x ⟵ e = &x ≔ ⦇ e (! &x) ⦈
-
-if_then_else_ : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ Bool → Statement n Γ τ → Statement n Γ τ → Statement n Γ τ
-(if e then b₁ else b₂) σ ρ = e σ ρ |> (Bool.if_then b₁ σ ρ else b₂ σ ρ)
-
-for : ∀ {n ls} {Γ : Sets n ls} m → Statement (suc n) (Fin m , Γ) τ → Statement n Γ τ
-for zero b σ ρ = σ , inj₁ ρ
-for (suc m) b σ ρ with b σ (zero , ρ)
-... | σ′ , inj₂ x = σ′ , inj₂ x
-... | σ′ , inj₁ (_ , ρ′) = for m b′ σ′ ρ′
- where
- b′ : Statement (suc _) (Fin m , _) _
- b′ σ (i , ρ) with b σ (suc i , ρ)
- ... | σ′ , inj₂ x = σ′ , inj₂ x
- ... | σ′ , inj₁ (_ , ρ′) = σ′ , inj₁ (i , ρ′)
-
-_∙_ : ∀ {n ls} {Γ : Sets n ls} → Statement n Γ τ → Statement n Γ τ → Statement n Γ τ
-(b₁ ∙ b₂) σ ρ = b₁ σ ρ |> λ (σ , ρ⊎x) → [ b₂ σ , (σ ,_) ∘ inj₂ ]′ ρ⊎x
-
-_∙end : ∀ {n ls} {Γ : Sets n ls} → Statement n Γ ⊤ → Procedure n Γ
-_∙end s σ ρ = s σ ρ |> proj₁
-
-_∙return_ : ∀ {n ls} {Γ : Sets n ls} → Statement n Γ τ → Expr n Γ τ → Function n Γ τ
-(s ∙return e) σ ρ = s σ ρ |> λ (σ , ρ⊎x) → fromInj₂ (e σ) ρ⊎x