summaryrefslogtreecommitdiff
path: root/src/Helium
diff options
context:
space:
mode:
Diffstat (limited to 'src/Helium')
-rw-r--r--src/Helium/Semantics/Denotational.agda179
-rw-r--r--src/Helium/Semantics/Denotational/Core.agda136
2 files changed, 155 insertions, 160 deletions
diff --git a/src/Helium/Semantics/Denotational.agda b/src/Helium/Semantics/Denotational.agda
index c2a3f4f..dce07e6 100644
--- a/src/Helium/Semantics/Denotational.agda
+++ b/src/Helium/Semantics/Denotational.agda
@@ -23,7 +23,7 @@ import Data.Nat.Properties as ℕₚ
open import Data.Product using (∃; _×_; _,_; dmap)
open import Data.Sum using ([_,_]′)
open import Data.Vec.Functional as V using (Vector)
-open import Function using (_$_)
+open import Function using (_$_; _∘₂_)
open import Function.Nary.NonDependent.Base
open import Helium.Instructions
import Helium.Semantics.Denotational.Core as Core
@@ -69,61 +69,63 @@ ElmtMask = Bits 4
-- State properties
-&R : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ (Fin 16) → Reference n Γ (Bits 32)
+&R : ∀ {n ls} {Γ : Sets n ls} → PureExpr n Γ (Fin 16) → Reference n Γ (Bits 32)
&R e = record
- { get = λ σ ρ → e σ ρ >>= λ (σ , i) → just (σ , State.R σ i)
- ; set = λ σ ρ x → e σ ρ >>= λ (σ , i) → just (record σ { R = V.updateAt i (λ _ → x) (State.R σ) } , ρ)
+ { get = λ σ ρ → State.R σ (e σ ρ)
+ ; set = λ x σ ρ → record σ { R = V.updateAt (e σ ρ) (λ _ → x) (State.R σ) } , ρ
}
-&S : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ (Fin 32) → Reference n Γ (Bits 32)
+&S : ∀ {n ls} {Γ : Sets n ls} → PureExpr n Γ (Fin 32) → Reference n Γ (Bits 32)
&S e = record
- { get = λ σ ρ → e σ ρ >>= λ (σ , i) → just (σ , State.S σ i)
- ; set = λ σ ρ x → e σ ρ >>= λ (σ , i) → just (record σ { S = V.updateAt i (λ _ → x) (State.S σ) } , ρ)
+ { get = λ σ ρ → State.S σ (e σ ρ)
+ ; set = λ x σ ρ → record σ { S = V.updateAt (e σ ρ) (λ _ → x) (State.S σ) } , ρ
}
-&Q : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ VecReg → Expr n Γ Beat → Reference n Γ (Bits 32)
-&Q reg beat = &S (λ σ ρ → reg σ ρ >>= λ (σ , reg) → beat σ ρ >>= λ (σ , beat) → just (σ , combine reg beat))
+&Q : ∀ {n ls} {Γ : Sets n ls} → PureExpr n Γ VecReg → PureExpr n Γ Beat → Reference n Γ (Bits 32)
+&Q reg beat = &S λ σ ρ → combine (reg σ ρ) (beat σ ρ)
&FPSCR-QC : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ (Bits 1)
&FPSCR-QC = record
- { get = λ σ ρ → just (σ , State.QC σ)
- ; set = λ σ ρ x → just (record σ { QC = x } , ρ)
+ { get = λ σ ρ → State.QC σ
+ ; set = λ x σ ρ → record σ { QC = x } , ρ
}
&VPR-P0 : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ (Bits 16)
&VPR-P0 = record
- { get = λ σ ρ → just (σ , State.P0 σ)
- ; set = λ σ ρ x → just (record σ { P0 = x } , ρ)
+ { get = λ σ ρ → State.P0 σ
+ ; set = λ x σ ρ → record σ { P0 = x } , ρ
}
&VPR-mask : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ (Bits 8)
&VPR-mask = record
- { get = λ σ ρ → just (σ , State.mask σ)
- ; set = λ σ ρ x → just (record σ { mask = x } , ρ)
+ { get = λ σ ρ → State.mask σ
+ ; set = λ x σ ρ → record σ { mask = x } , ρ
}
&AdvanceVPT : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ Bool
&AdvanceVPT = record
- { get = λ σ ρ → just (σ , State.advanceVPT σ)
- ; set = λ σ ρ x → just (record σ { advanceVPT = x } , ρ)
+ { get = λ σ ρ → State.advanceVPT σ
+ ; set = λ x σ ρ → record σ { advanceVPT = x } , ρ
}
-- Reference properties
&cast : ∀ {k m n ls} {Γ : Sets n ls} → .(eq : k ≡ m) → Reference n Γ (Bits k) → Reference n Γ (Bits m)
&cast eq &v = record
- { get = λ σ ρ → Reference.get &v σ ρ >>= λ (σ , v) → just (σ , cast eq v)
- ; set = λ σ ρ x → Reference.set &v σ ρ (cast (sym eq) x)
+ { get = λ σ ρ → cast eq (Reference.get &v σ ρ)
+ ; set = λ x σ ρ → Reference.set &v (cast (sym eq) x) σ ρ
}
-slice : ∀ {k m n ls} {Γ : Sets n ls} → Reference n Γ (Bits m) → Expr n Γ (∃ λ (i : Fin (suc m)) → ∃ λ j → toℕ (i - j) ≡ k) → Reference n Γ (Bits k)
+slice : ∀ {k m n ls} {Γ : Sets n ls} → Reference n Γ (Bits m) → PureExpr n Γ (∃ λ (i : Fin (suc m)) → ∃ λ j → toℕ (i - j) ≡ k) → Reference n Γ (Bits k)
slice &v idx = record
- { get = λ σ ρ → Reference.get &v σ ρ >>= λ (σ , v) → idx σ ρ >>= λ (σ , i , j , i-j≡k) → just (σ , cast i-j≡k (sliceᵇ i j v))
- ; set = λ σ ρ v → Reference.get &v σ ρ >>= λ (σ , v′) → idx σ ρ >>= λ (σ , i , j , i-j≡k) → Reference.set &v σ ρ (updateᵇ i j (cast (sym i-j≡k) v) v′)
+ { get = λ σ ρ → let (i , j , i-j≡k) = idx σ ρ in cast i-j≡k (sliceᵇ i j (Reference.get &v σ ρ))
+ ; set = λ v σ ρ →
+ let (i , j , i-j≡k) = idx σ ρ in
+ Reference.set &v (updateᵇ i j (cast (sym (i-j≡k)) v) (Reference.get &v σ ρ)) σ ρ
}
-elem : ∀ {k n ls} {Γ : Sets n ls} m → Reference n Γ (Bits (k * m)) → Expr n Γ (Fin k) → Reference n Γ (Bits m)
-elem m &v idx = slice &v λ σ ρ → idx σ ρ >>= λ (σ , i) → just (σ , helper _ _ i)
+elem : ∀ {k n ls} {Γ : Sets n ls} m → Reference n Γ (Bits (k * m)) → PureExpr n Γ (Fin k) → Reference n Γ (Bits m)
+elem m &v idx = slice &v (λ σ ρ → helper _ _ (idx σ ρ))
where
helper : ∀ m n → Fin m → ∃ λ (i : Fin (suc (m * n))) → ∃ λ j → toℕ (i - j) ≡ n
helper (suc m) n zero = inject+ (m * n) (fromℕ n) , # 0 , eq
@@ -154,13 +156,14 @@ elem m &v idx = slice &v λ σ ρ → idx σ ρ >>= λ (σ , i) → just (σ , h
-- General functions
copyMasked : VecReg → Procedure 3 (Bits 32 , Beat , ElmtMask , _)
-copyMasked dest = for 4 (lift (
- -- e result beat elmtMask
- if ⦇ (λ x y → does (getᵇ y x ≟ᵇ 1b)) (!# 3) (!# 0) ⦈
- then
- elem 8 (&Q ⦇ dest ⦈ (!# 2)) (!# 0) ≔ (! elem 8 (var (# 1)) (!# 0))
- else
- skip))
+copyMasked dest =
+ for 4 (
+ -- 0:e 1:result 2:beat 3:elmtMask
+ if ⦇ (λ x y → does (getᵇ y x ≟ᵇ 1b)) (↓ !# 3) (↓ !# 0) ⦈
+ then
+ elem 8 (&Q (pure′ dest) (!# 2)) (!# 0) ≔ ↓! elem 8 (var (# 1)) (!# 0)
+ else skip) ∙
+ ⦇ _ ⦈
module fun-sliceᶻ
(≈ᶻ-trans : Transitive _≈ᶻ_)
@@ -174,42 +177,54 @@ module fun-sliceᶻ
open sliceᶻ ≈ᶻ-trans round∘⟦⟧ round-cong 0#-homo-round 2^n≢0 *ᶻ-identityʳ
signedSatQ : ∀ n → Function 1 (ℤ , _) (Bits (suc n) × Bool)
- signedSatQ n =
- declare ⦇ true ⦈ $ (
- if ⦇ (λ i → does (1ℤ << n +ᶻ -ᶻ 1ℤ <?ᶻ i)) (!# 1) ⦈
+ signedSatQ n = declare ⦇ true ⦈ $
+ -- 0:sat 1:x
+ if ⦇ (λ i → does (1ℤ << n +ᶻ -ᶻ 1ℤ <?ᶻ i)) (↓ !# 1) ⦈
then
var (# 1) ≔ ⦇ (1ℤ << n +ᶻ -ᶻ 1ℤ) ⦈
- else if ⦇ (λ i → does (-ᶻ 1ℤ << n <?ᶻ i)) (!# 1) ⦈
+ else if ⦇ (λ i → does (-ᶻ 1ℤ << n <?ᶻ i)) (↓ !# 1) ⦈
then
var (# 1) ≔ ⦇ (-ᶻ 1ℤ << n) ⦈
else
- var (# 0) ≔ ⦇ false ⦈) ∙
- return ⦇ ⦇ (sliceᶻ (suc n) zero) (!# 1) ⦈ , !# 0 ⦈
+ var (# 0) ≔ ⦇ false ⦈ ∙
+ ⦇ ⦇ (sliceᶻ (suc n) zero) (↓ !# 1) ⦈ , (↓ !# 0) ⦈
advanceVPT : Procedure 1 (Beat , _)
-advanceVPT = declare (! elem 4 &VPR-mask ⦇ hilow (!# 0) ⦈) $
- if ⦇ (λ x → does (x ≟ᵇ 1b ∶ 0b ∶ 0b ∶ 0b)) (!# 0) ⦈
+advanceVPT = declare (↓! elem 4 &VPR-mask (hilow ∘₂ !# 0)) $
+ -- 0:vptState 1:beat
+ if ⦇ (λ x → does (x ≟ᵇ 1b ∶ 0b ∶ 0b ∶ 0b)) (↓ !# 0) ⦈
then
var (# 0) ≔ ⦇ zeros ⦈
- else if ⦇ (λ x → does (x ≟ᵇ zeros {4})) (!# 0) ⦈
+ else if ⦇ (λ x → does (x ≟ᵇ zeros {4})) (↓ !# 0) ⦈
then skip
- else
- (if ⦇ (hasBit (# 3)) (!# 0) ⦈ then
- elem 4 &VPR-P0 (!# 1) ⟵ not
- else skip ∙
- var (# 0) ⟵ λ x → sliceᵇ (# 3) zero x ∶ 0b) ∙
- if ⦇ (λ x → does (oddeven x Finₚ.≟ # 1)) (!# 1) ⦈
+ else (
+ if ⦇ (hasBit (# 3)) (↓ !# 0) ⦈
+ then
+ elem 4 &VPR-P0 (!# 1) ⟵ not
+ else skip ∙
+ (var (# 0) ⟵ λ x → sliceᵇ (# 3) zero x ∶ 0b)) ∙
+ if ⦇ (λ x → does (oddeven x Finₚ.≟ # 1)) (↓ !# 1) ⦈
then
- elem 4 &VPR-mask ⦇ hilow (!# 1) ⦈ ≔ !# 0
- else skip
+ elem 4 &VPR-mask (hilow ∘₂ !# 1) ≔ ↓ !# 0
+ else skip ∙
+ ⦇ _ ⦈
execBeats : Procedure 2 (Beat , ElmtMask , _) → Procedure 0 _
-execBeats inst = for 4 (lift (
- declare ⦇ ones ⦈ $
- if ⦇ (λ x → does (x ≟ᵇ zeros {4})) (! elem 4 &VPR-mask ⦇ hilow (!# 1) ⦈) ⦈ then skip else var (# 0) ≔ ! elem 4 &VPR-P0 (!# 1) ∙
- &AdvanceVPT ≔ ⦇ true ⦈ ∙
- ignore (call inst (⦇ !# 1 , !# 0 ⦈)) ∙
- if ! &AdvanceVPT then ignore (call advanceVPT (!# 1)) else skip))
+execBeats inst = declare ⦇ ones ⦈ $
+ for 4 (
+ -- 0:beat 1:elmtMask
+ if ⦇ (λ x → does (x ≟ᵇ zeros {4})) (↓! elem 4 &VPR-mask (hilow ∘₂ !# 0)) ⦈
+ then
+ var (# 1) ≔ ⦇ ones ⦈
+ else
+ var (# 1) ≔ ↓! elem 4 &VPR-P0 (!# 0) ∙
+ &AdvanceVPT ≔ ⦇ true ⦈ ∙
+ invoke inst ⦇ ↓ !# 0 , ↓ !# 1 ⦈ ∙
+ if ↓! &AdvanceVPT
+ then
+ invoke advanceVPT (↓ !# 0)
+ else skip) ∙
+ ⦇ _ ⦈
module _
(d : VecOp₂)
@@ -218,18 +233,17 @@ module _
open VecOp₂ d
vec-op₂ : Op₂ (Bits (toℕ esize)) → Procedure 2 (Beat , ElmtMask , _)
- vec-op₂ op = declare ⦇ zeros ⦈ (declare (! &Q ⦇ src₁ ⦈ (!# 1)) (
- -- op₁ result beat elmtMask
- for (toℕ elements) (lift (
- -- e op₁ result beat elmtMask
+ vec-op₂ op = declare ⦇ zeros ⦈ $ declare (↓! &Q (pure′ src₁) (!# 1)) $
+ for (toℕ elements) (
+ -- 0:e 1:op₁ 2:result 3:beat 4:elmntMask
elem (toℕ esize) (&cast (sym e*e≡32) (var (# 2))) (!# 0) ≔
- ⦇ op
- (! elem (toℕ esize) (&cast (sym e*e≡32) (var (# 1))) (!# 0))
- ([ (λ src₂ → ! slice (&R ⦇ src₂ ⦈) ⦇ (esize , zero , refl) ⦈)
- , (λ src₂ → ! elem (toℕ esize) (&cast (sym e*e≡32) (&Q ⦇ src₂ ⦈ (!# 3))) (!# 0))
- ]′ src₂) ⦈
- )) ∙
- ignore (call (copyMasked dest) ⦇ !# 1 , ⦇ !# 2 , !# 3 ⦈ ⦈)))
+ (⦇ op
+ (↓! elem (toℕ esize) (&cast (sym e*e≡32) (var (# 1))) (!# 0))
+ ([ (λ src₂ → ↓! slice (&R (pure′ src₂)) (pure′ (esize , zero , refl)))
+ , (λ src₂ → ↓! elem (toℕ esize) (&cast (sym e*e≡32) (&Q (pure′ src₂) (!# 3))) (!# 0))
+ ]′ src₂) ⦈)) ∙
+ invoke (copyMasked dest) ⦇ ↓ !# 1 , ⦇ ↓ !# 2 , ↓ !# 3 ⦈ ⦈ ∙
+ ⦇ _ ⦈
-- Instruction semantics
@@ -271,23 +285,24 @@ module _
eq m (suc i) = eq m i
vqdmulh : VQDMulH → Procedure 2 (Beat , ElmtMask , _)
- vqdmulh d = declare ⦇ zeros ⦈ (declare (! &Q ⦇ src₁ ⦈ (!# 1)) (
- -- op₁ result beat elmtMask
- for (toℕ elements) (lift (
- -- e op₁ result beat elmtMask
- declare
- ⦇ (λ x y → (2ℤ *ᶻ sint x *ᶻ sint y +ᶻ rval) >> toℕ esize)
- (! elem (toℕ esize) (&cast (sym e*e≡32) (var (# 1))) (!# 0))
- ([ (λ src₂ → ! slice (&R ⦇ src₂ ⦈) ⦇ (esize , zero , refl) ⦈)
- , (λ src₂ → ! elem (toℕ esize) (&cast (sym e*e≡32) (&Q ⦇ src₂ ⦈ (!# 3))) (!# 0))
- ]′ src₂) ⦈ $
- declare ⦇ false ⦈ $
- -- sat value e op₁ result beat elmtMask
- elem (toℕ esize) (&cast (sym e*e≡32) (var (# 4))) (!# 2) ,′ var (# 0) ≔
- call (signedSatQ (toℕ esize-1)) (!# 1) ∙
- if !# 0 then if ⦇ (λ m e → hasBit (combine e zero) (cast (sym e*e>>3≡4) m)) (!# 6) (!# 2) ⦈ then &FPSCR-QC ≔ ⦇ 1b ⦈ else skip else skip
- )) ∙
- ignore (call (copyMasked dest) ⦇ !# 1 , ⦇ !# 2 , !# 3 ⦈ ⦈)))
+ vqdmulh d = declare ⦇ zeros ⦈ $ declare (↓! &Q (pure′ src₁) (!# 1)) $ declare ⦇ false ⦈ $
+ for (toℕ elements) (
+ -- 0:e 1:sat 2:op₁ 3:result 4:beat 5:elmntMask
+ elem (toℕ esize) (&cast (sym e*e≡32) (var (# 3))) (!# 0) ,′ var (# 1) ≔
+ call (signedSatQ (toℕ esize-1))
+ ⦇ (λ x y → (2ℤ *ᶻ sint x *ᶻ sint y +ᶻ rval) >> toℕ esize)
+ (↓! elem (toℕ esize) (&cast (sym e*e≡32) (var (# 2))) (!# 0))
+ ([ (λ src₂ → ↓! slice (&R (pure′ src₂)) (pure′ (esize , zero , refl)))
+ , (λ src₂ → ↓! elem (toℕ esize) (&cast (sym e*e≡32) (&Q (pure′ src₂) (!# 4))) (!# 0))
+ ]′ src₂) ⦈ ∙
+ if ↓ !# 1
+ then if ⦇ (λ m e → hasBit (combine e zero) (cast (sym e*e>>3≡4) m)) (↓ !# 5) (↓ !# 0) ⦈
+ then
+ &FPSCR-QC ≔ ⦇ 1b ⦈
+ else skip
+ else skip) ∙
+ invoke (copyMasked dest) ⦇ ↓ !# 2 , ⦇ ↓ !# 3 , ↓ !# 4 ⦈ ⦈ ∙
+ ⦇ _ ⦈
where
open VQDMulH d
rval = Bool.if rounding then 1ℤ << toℕ esize-1 else 0ℤ
diff --git a/src/Helium/Semantics/Denotational/Core.agda b/src/Helium/Semantics/Denotational/Core.agda
index 359fbd4..d92c1b2 100644
--- a/src/Helium/Semantics/Denotational/Core.agda
+++ b/src/Helium/Semantics/Denotational/Core.agda
@@ -14,13 +14,14 @@ module Helium.Semantics.Denotational.Core
open import Algebra.Core
open import Data.Bool as Bool using (Bool)
open import Data.Fin hiding (lift)
-open import Data.Maybe using (Maybe; just; nothing; map; _>>=_)
open import Data.Nat using (ℕ; zero; suc)
import Data.Nat.Properties as ℕₚ
-open import Data.Product using (_×_; _,_; map₂; uncurry)
+open import Data.Product hiding (_<*>_; _,′_)
open import Data.Product.Nary.NonDependent
+open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_]′)
open import Data.Unit using (⊤)
-open import Level renaming (suc to ℓsuc) hiding (lift)
+open import Level renaming (suc to ℓsuc) hiding (zero)
+open import Function using (_∘_; _∘₂_; _|>_)
open import Function.Nary.NonDependent.Base
open import Relation.Nullary.Decidable using (True)
@@ -42,122 +43,101 @@ private
update zero y (_ , xs) = y , xs
update (suc i) y (x , xs) = x , update i y xs
+PureExpr : ∀ n {ls} → Sets n ls → Set ℓ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′)
+PureExpr n Γ τ = (σ : State) → (ρ : Product⊤ n Γ) → τ
+
Expr : ∀ n {ls} → Sets n ls → Set ℓ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′)
-Expr _ Γ τ = (σ : State) → (ρ : Product⊤ _ Γ) → Maybe (State × τ)
+Expr n Γ τ = (σ : State) → (ρ : Product⊤ n Γ) → State × τ
+
record Reference n {ls} (Γ : Sets n ls) (τ : Set ℓ) : Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′) where
field
- get : Expr n Γ τ
- set : (σ : State) → (ρ : Product⊤ _ Γ) → τ → Maybe (State × Product⊤ _ Γ)
-
-Statement : ∀ n {ls} → Sets n ls → Set ℓ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′)
-Statement n Γ τ = (cont : Expr n Γ τ) → Expr n Γ τ
-
-ForStatement : ∀ n {ls} → Sets n ls → Set ℓ → ℕ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′)
-ForStatement n Γ τ m = (cont break : Expr n Γ τ) → Expr (suc n) (Fin m , Γ) τ
+ get : PureExpr n Γ τ
+ set : τ → (σ : State) → (ρ : Product⊤ n Γ) → State × Product⊤ n Γ
Function : ∀ n {ls} → Sets n ls → Set ℓ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′)
-Function = Statement
+Function = Expr
Procedure : ∀ n {ls} → Sets n ls → Set (⨆ n ls ⊔ ℓ′)
Procedure n Γ = Function n Γ ⊤
+Block : ∀ n {ls} → Sets n ls → Set ℓ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′)
+Block n Γ τ = (σ : State) → (ρ : Product⊤ n Γ) → State × (Product⊤ n Γ ⊎ τ)
+
-- Expressions
-unknown : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ τ
-unknown σ ρ = nothing
+pure′ : ∀ {n ls} {Γ : Sets n ls} → τ → PureExpr n Γ τ
+pure′ v σ ρ = v
pure : ∀ {n ls} {Γ : Sets n ls} → τ → Expr n Γ τ
-pure v σ ρ = just (σ , v)
+pure v σ ρ = σ , v
-apply : ∀ {n ls} {Γ : Sets n ls} → (τ → τ′) → Expr n Γ τ → Expr n Γ τ′
-apply f e σ ρ = map (map₂ f) (e σ ρ)
+↓_ : ∀ {n ls} {Γ : Sets n ls} → PureExpr n Γ τ → Expr n Γ τ
+(↓ e) σ ρ = σ , e σ ρ
_<*>_ : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ (τ → τ′) → Expr n Γ τ → Expr n Γ τ′
-_<*>_ f e σ ρ = f σ ρ >>= λ (σ , f) → apply f e σ ρ
+_<*>_ f e σ ρ = f σ ρ |> λ (σ , f) → map₂ f (e σ ρ)
-!_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Expr n Γ τ
+!_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → PureExpr n Γ τ
! r = Reference.get r
+↓!_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Expr n Γ τ
+↓! r = ↓ ! r
+
call : ∀ {m n ls₁ ls₂} {Γ : Sets m ls₁} {Δ : Sets n ls₂} → Function m Γ τ → Expr n Δ (Product m Γ) → Expr n Δ τ
-call f e σ ρ = e σ ρ >>= λ (σ , v) → f unknown σ (toProduct⊤ _ v)
+call f e σ ρ = e σ ρ |> map₂ (toProduct⊤ _) |> uncurry f
+
+declare : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ τ → Expr (suc n) (τ , Γ) τ′ → Expr n Γ τ′
+declare e s σ ρ = e σ ρ |> map₂ (_, ρ) |> uncurry s
-- References
var : ∀ {n ls} {Γ : Sets n ls} i → Reference n Γ (Projₙ Γ i)
var i = record
- { get = λ σ ρ → just (σ , projₙ _ i (toProduct _ ρ))
- ; set = λ σ ρ v → just (σ , update i v ρ)
+ { get = λ σ ρ → projₙ _ i (toProduct _ ρ)
+ ; set = λ v → curry (map₂ (update i v))
}
-!#_ : ∀ {n ls} {Γ : Sets n ls} m {m<n : True (suc m ℕₚ.≤? n)} → Expr n Γ (Projₙ Γ (#_ m {n} {m<n}))
-(!# m) {m<n} = ! (var (#_ m {m<n = m<n}))
-
-wknRef : ∀ {m ls} {Γ : Sets m ls} → Reference m Γ τ → Reference (suc m) (τ′ , Γ) τ
-wknRef &x = record
- { get = λ σ (_ , ρ) → Reference.get &x σ ρ
- ; set = λ σ (v , ρ) x → Reference.set &x σ ρ x >>= λ (σ , ρ) → just (σ , (v , ρ))
- }
+!#_ : ∀ {n ls} {Γ : Sets n ls} m {m<n : True (suc m ℕₚ.≤? n)} → PureExpr n Γ (Projₙ Γ (#_ m {n} {m<n}))
+(!# m) {m<n} = ! var (#_ m {m<n = m<n})
_,′_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Reference n Γ τ′ → Reference n Γ (τ × τ′)
&x ,′ &y = record
- { get = λ σ ρ → Reference.get &x σ ρ >>= λ (σ , x) → Reference.get &y σ ρ >>= λ (σ , y) → just (σ , (x , y))
- ; set = λ σ ρ (x , y) → Reference.set &x σ ρ x >>= λ (σ , ρ) → Reference.set &y σ ρ y
+ { get = λ σ ρ → Reference.get &x σ ρ , Reference.get &y σ ρ
+ ; set = λ (x , y) σ ρ → uncurry (Reference.set &y y) (Reference.set &x x σ ρ)
}
--- Statements
+-- Blocks
infixr 1 _∙_
-infix 4 _≔_ _⟵_
infixl 2 if_then_else_
+infix 4 _≔_ _⟵_
-skip : ∀ {n ls} {Γ : Sets n ls} → Statement n Γ τ
-skip cont = cont
+skip : ∀ {n ls} {Γ : Sets n ls} → Block n Γ τ
+skip σ ρ = σ , inj₁ ρ
-ignore : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ τ → Statement n Γ τ′
-ignore e cont σ ρ = e σ ρ >>= λ (σ , _) → cont σ ρ
+invoke : ∀ {m n ls₁ ls₂} {Γ : Sets m ls₁} {Δ : Sets n ls₂} → Procedure m Γ → Expr n Δ (Product m Γ) → Block n Δ τ
+invoke f e σ ρ = call f e σ ρ |> map₂ (λ _ → inj₁ ρ)
-return : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ τ → Statement n Γ τ
-return e _ = e
+_≔_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Expr n Γ τ → Block n Γ τ′
+(&x ≔ e) σ ρ = e σ ρ |> λ (σ , x) → Reference.set &x x σ ρ |> map₂ inj₁
-_≔_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Expr n Γ τ → Statement n Γ τ′
-(ref ≔ e) cont σ ρ = e σ ρ >>= λ (σ , v) → Reference.set ref σ ρ v >>= λ (σ , v) → cont σ v
+_⟵_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Op₁ τ → Block n Γ τ′
+&x ⟵ e = &x ≔ ⦇ e (↓ (! &x)) ⦈
-_⟵_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Op₁ τ → Statement n Γ τ′
-ref ⟵ e = ref ≔ ⦇ e (! ref) ⦈
+if_then_else_ : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ Bool → Block n Γ τ → Block n Γ τ → Block n Γ τ
+(if e then b₁ else b₂) σ ρ = e σ ρ |> λ (σ , b) → Bool.if b then b₁ σ ρ else b₂ σ ρ
-label : ∀ {n ls} {Γ : Sets n ls} → smap _ (Reference n Γ) n Γ ⇉ Statement n Γ τ → Statement n Γ τ
-label {n = n} s = uncurry⊤ₙ n s vars
+for : ∀ {n ls} {Γ : Sets n ls} m → Block (suc n) (Fin m , Γ) τ → Block n Γ τ
+for zero b σ ρ = σ , inj₁ ρ
+for (suc m) b σ ρ with b σ (zero , ρ)
+... | σ′ , inj₂ x = σ′ , inj₂ x
+... | σ′ , inj₁ (_ , ρ′) = for m b′ σ′ ρ′
where
- vars : ∀ {n ls} {Γ : Sets n ls} → Product⊤ n (smap _ (Reference n Γ) n Γ)
- vars {zero} = _
- vars {suc n} = var (# 0) , mapAll _ _ wknRef vars
-
-declare : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ τ → Statement (suc n) (τ , Γ) τ′ → Statement n Γ τ′
-declare e s cont σ ρ = e σ ρ >>= λ (σ , v) → s (λ σ (_ , ρ) → cont σ ρ) σ (v , ρ)
-
-if_then_else_ : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ Bool → Statement n Γ τ → Statement n Γ τ → Statement n Γ τ
-(if e then b₁ else b₂) cont σ ρ = e σ ρ >>= λ (σ , b) → Bool.if b then b₁ cont σ ρ else b₂ cont σ ρ
-
-for : ∀ {n ls} {Γ : Sets n ls} m → ForStatement n Γ τ m → Statement n Γ τ
-for zero s cont σ ρ = cont σ ρ
-for (suc m) s cont σ ρ = s (for m (λ cont break σ (i , ρ) → s cont break σ (suc i , ρ)) cont) cont σ (# 0 , ρ)
-
-_∙_ : ∀ {n ls} {Γ : Sets n ls} → Op₂ (Statement n Γ τ)
-(s ∙ t) cont = s (t cont)
-
--- For statements
-
-infixr 9 _∙′_
-
-lift : ∀ {m n ls} {Γ : Sets n ls} → Statement (suc n) (Fin m , Γ) τ → ForStatement n Γ τ m
-lift s cont _ = s (λ σ (_ , ρ) → cont σ ρ)
-
-continue : ∀ {m n ls} {Γ : Sets n ls} → ForStatement n Γ τ m
-continue cont break σ (_ , ρ) = cont σ ρ
-
-break : ∀ {m n ls} {Γ : Sets n ls} → ForStatement n Γ τ m
-break cont break σ (_ , ρ) = break σ ρ
+ b′ : Block (suc _) (Fin m , _) _
+ b′ σ (i , ρ) with b σ (suc i , ρ)
+ ... | σ′ , inj₂ x = σ′ , inj₂ x
+ ... | σ′ , inj₁ (_ , ρ′) = σ′ , inj₁ (i , ρ′)
-_∙′_ : ∀ {m n ls} {Γ : Sets n ls} → Op₂ (ForStatement n Γ τ m)
-(s ∙′ t) cont break σ (i , ρ) = s (λ σ ρ → t cont break σ (i , ρ)) break σ (i , ρ)
+_∙_ : ∀ {n ls} {Γ : Sets n ls} → Block n Γ τ → Expr n Γ τ → Expr n Γ τ
+(b ∙ e) σ τ = b σ τ |> λ (σ , ρ⊎x) → [ e σ , σ ,_ ]′ ρ⊎x