summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/Helium/Data/Pseudocode/Core.agda18
-rw-r--r--src/Helium/Semantics/Axiomatic/Term.agda333
-rw-r--r--src/Helium/Semantics/Denotational/Core.agda16
3 files changed, 201 insertions, 166 deletions
diff --git a/src/Helium/Data/Pseudocode/Core.agda b/src/Helium/Data/Pseudocode/Core.agda
index a229e8a..86bbffd 100644
--- a/src/Helium/Data/Pseudocode/Core.agda
+++ b/src/Helium/Data/Pseudocode/Core.agda
@@ -43,7 +43,7 @@ data HasEquality : Type → Set where
fin : ∀ {n} → HasEquality (fin n)
real : HasEquality real
bit : HasEquality bit
- bits : ∀ {n} → HasEquality (bits n)
+ bits : ∀ n → HasEquality (bits n)
hasEquality? : Decidable HasEquality
hasEquality? bool = yes bool
@@ -51,7 +51,7 @@ hasEquality? int = yes int
hasEquality? (fin n) = yes fin
hasEquality? real = yes real
hasEquality? bit = yes bit
-hasEquality? (bits n) = yes bits
+hasEquality? (bits n) = yes (bits n)
hasEquality? (tuple n x) = no (λ ())
hasEquality? (array t n) = no (λ ())
@@ -69,10 +69,10 @@ isNumeric? (bits n) = no (λ ())
isNumeric? (tuple n x) = no (λ ())
isNumeric? (array t n) = no (λ ())
-combineNumeric : ∀ t₁ t₂ → {isNumeric₁ : True (isNumeric? t₁)} → {isNumeric₂ : True (isNumeric? t₂)} → Type
-combineNumeric int int = int
-combineNumeric int real = real
-combineNumeric real _ = real
+combineNumeric : ∀ t₁ t₂ → (isNumeric₁ : True (isNumeric? t₁)) → (isNumeric₂ : True (isNumeric? t₂)) → Type
+combineNumeric int int _ _ = int
+combineNumeric int real _ _ = real
+combineNumeric real _ _ _ = real
data Sliced : Set where
bits : Sliced
@@ -147,8 +147,8 @@ module Code {o} (Σ : Vec Type o) where
cut : ∀ {m n t} → Expression Γ (asType t (n ℕ.+ m)) → Expression Γ (fin (suc n)) → Expression Γ (tuple 2 (asType t m ∷ asType t n ∷ []))
cast : ∀ {i j t} → .(eq : i ≡ j) → Expression Γ (asType t i) → Expression Γ (asType t j)
-_ : ∀ {t} {isNumeric : True (isNumeric? t)} → Expression Γ t → Expression Γ t
- _+_ : ∀ {t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ {isNumeric₁} {isNumeric₂})
- _*_ : ∀ {t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ {isNumeric₁} {isNumeric₂})
+ _+_ : ∀ {t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ isNumeric₁ isNumeric₂)
+ _*_ : ∀ {t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ isNumeric₁ isNumeric₂)
-- _/_ : Expression Γ real → Expression Γ real → Expression Γ real
_^_ : ∀ {t} {isNumeric : True (isNumeric? t)} → Expression Γ t → ℕ → Expression Γ t
_>>_ : Expression Γ int → ℕ → Expression Γ int
@@ -312,7 +312,7 @@ module Code {o} (Σ : Vec Type o) where
slice′ : ∀ {n Γ i j t} → Expression {n} Γ (asType t (i ℕ.+ j)) → Expression Γ (fin (suc j)) → Expression Γ (asType t i)
slice′ {i = i} e₁ e₂ = slice (cast (+-comm i _) e₁) e₂
- _-_ : ∀ {n Γ t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression {n} Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ {isNumeric₁} {isNumeric₂})
+ _-_ : ∀ {n Γ t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression {n} Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ isNumeric₁ isNumeric₂)
_-_ {isNumeric₂ = isNumeric₂} x y = x + (-_ {isNumeric = isNumeric₂} y)
_<<_ : ∀ {n Γ} → Expression {n} Γ int → ℕ → Expression Γ int
diff --git a/src/Helium/Semantics/Axiomatic/Term.agda b/src/Helium/Semantics/Axiomatic/Term.agda
index 980b85a..1ccef89 100644
--- a/src/Helium/Semantics/Axiomatic/Term.agda
+++ b/src/Helium/Semantics/Axiomatic/Term.agda
@@ -23,14 +23,15 @@ open import Data.Nat as ℕ using (ℕ; suc)
import Data.Nat.Properties as ℕₚ
open import Data.Product using (∃; _×_; _,_; proj₁; proj₂; uncurry; dmap)
open import Data.Vec as Vec using (Vec; []; _∷_; _++_; lookup)
+import Data.Vec.Functional as VecF
import Data.Vec.Properties as Vecₚ
open import Data.Vec.Relation.Unary.All using (All; []; _∷_)
-open import Function using (_∘_; _∘₂_; id)
+open import Function using (_∘_; _∘₂_; id; flip)
open import Helium.Data.Pseudocode.Core
import Helium.Data.Pseudocode.Manipulate as M
open import Helium.Semantics.Axiomatic.Core rawPseudocode
open import Level using (_⊔_; lift; lower)
-open import Relation.Binary.PropositionalEquality
+open import Relation.Binary.PropositionalEquality hiding ([_]) renaming (subst to ≡-subst)
open import Relation.Nullary using (does; yes; no; ¬_)
open import Relation.Nullary.Decidable.Core using (True; toWitness)
open import Relation.Nullary.Negation using (contradiction)
@@ -51,7 +52,7 @@ castType : Term Σ Γ Δ t → t ≡ t′ → Term Σ Γ Δ t′
castType (state i) refl = state i
castType (var i) refl = var i
castType (meta i) refl = meta i
-castType (func f ts) eq = func (subst (Transform _) eq f) ts
+castType (func f ts) eq = func (≡-subst (Transform _) eq f) ts
substState : Term Σ Γ Δ t → ∀ i → Term Σ Γ Δ (lookup Σ i) → Term Σ Γ Δ t
substState (state i) j t′ with i Fin.≟ j
@@ -141,20 +142,147 @@ wknMetas τs (func f ts) = func f (helper ts)
helper [] = []
helper (t ∷ ts) = wknMetas τs t ∷ helper ts
-module _ {Σ : Vec Type o} (2≉0 : ¬ 2 ℝ′.×′ 1ℝ ℝ.≈ 0ℝ) where
- open Code Σ
+func₀ : ⟦ t ⟧ₜ → Term Σ Γ Δ t
+func₀ f = func (λ _ → f) []
- 𝒦 : Literal t → Term Σ Γ Δ t
- 𝒦 (x ′b) = func (λ _ → lift x) []
- 𝒦 (x ′i) = func (λ _ → lift (x ℤ′.×′ 1ℤ)) []
- 𝒦 (x ′f) = func (λ _ → lift x) []
- 𝒦 (x ′r) = func (λ _ → lift (x ℝ′.×′ 1ℝ)) []
- 𝒦 (x ′x) = func (λ _ → lift (Bool.if x then 1𝔹 else 0𝔹)) []
- 𝒦 ([] ′xs) = func (λ _ → []) []
- 𝒦 ((x ∷ xs) ′xs) = func (λ (x , xs , _) → xs Vec.∷ʳ x) (𝒦 (x ′x) ∷ 𝒦 (xs ′xs) ∷ [])
- 𝒦 (x ′a) = func (λ (x , _) → Vec.replicate x) (𝒦 x ∷ [])
+func₁ : (⟦ t ⟧ₜ → ⟦ t′ ⟧ₜ) → Term Σ Γ Δ t → Term Σ Γ Δ t′
+func₁ f t = func (λ (x , _) → f x) (t ∷ [])
- ℰ : Expression Γ t → Term Σ Γ Δ t
+func₂ : (⟦ t₁ ⟧ₜ → ⟦ t₂ ⟧ₜ → ⟦ t′ ⟧ₜ) → Term Σ Γ Δ t₁ → Term Σ Γ Δ t₂ → Term Σ Γ Δ t′
+func₂ f t₁ t₂ = func (λ (x , y , _) → f x y) (t₁ ∷ t₂ ∷ [])
+
+[_][_≟_] : HasEquality t → Term Σ Γ Δ t → Term Σ Γ Δ t → Term Σ Γ Δ bool
+[ bool ][ t ≟ t′ ] = func₂ (λ (lift x) (lift y) → lift (does (x Bool.≟ y))) t t′
+[ int ][ t ≟ t′ ] = func₂ (λ (lift x) (lift y) → lift (does (x ≟ᶻ y))) t t′
+[ fin ][ t ≟ t′ ] = func₂ (λ (lift x) (lift y) → lift (does (x Fin.≟ y))) t t′
+[ real ][ t ≟ t′ ] = func₂ (λ (lift x) (lift y) → lift (does (x ≟ʳ y))) t t′
+[ bit ][ t ≟ t′ ] = func₂ (λ (lift x) (lift y) → lift (does (x ≟ᵇ₁ y))) t t′
+[ bits n ][ t ≟ t′ ] = func₂ (λ xs ys → lift (does (VecF.fromVec (Vec.map lower xs) ≟ᵇ VecF.fromVec (Vec.map lower ys)))) t t′
+
+[_][_<?_] : IsNumeric t → Term Σ Γ Δ t → Term Σ Γ Δ t → Term Σ Γ Δ bool
+[ int ][ t <? t′ ] = func₂ (λ (lift x) (lift y) → lift (does (x <ᶻ? y))) t t′
+[ real ][ t <? t′ ] = func₂ (λ (lift x) (lift y) → lift (does (x <ʳ? y))) t t′
+
+[_][_] : ∀ t → Term Σ Γ Δ (elemType t) → Term Σ Γ Δ (asType t 1)
+[ bits ][ t ] = func₁ (_∷ []) t
+[ array τ ][ t ] = func₁ (_∷ []) t
+
+unbox : ∀ t → Term Σ Γ Δ (asType t 1) → Term Σ Γ Δ (elemType t)
+unbox bits = func₁ Vec.head
+unbox (array t) = func₁ Vec.head
+
+castV : ∀ {a} {A : Set a} {m n} → .(eq : m ≡ n) → Vec A m → Vec A n
+castV {n = 0} eq [] = []
+castV {n = suc n} eq (x ∷ xs) = x ∷ castV (ℕₚ.suc-injective eq) xs
+
+cast′ : ∀ t → .(eq : m ≡ n) → ⟦ asType t m ⟧ₜ → ⟦ asType t n ⟧ₜ
+cast′ bits eq = castV eq
+cast′ (array τ) eq = castV eq
+
+cast : ∀ t → .(eq : m ≡ n) → Term Σ Γ Δ (asType t m) → Term Σ Γ Δ (asType t n)
+cast τ eq = func₁ (cast′ τ eq)
+
+[_][-_] : IsNumeric t → Term Σ Γ Δ t → Term Σ Γ Δ t
+[ int ][- t ] = func₁ (lift ∘ ℤ.-_ ∘ lower) t
+[ real ][- t ] = func₁ (lift ∘ ℝ.-_ ∘ lower) t
+
+[_,_,_,_][_+_] : ∀ t₁ t₂ → (isNum₁ : True (isNumeric? t₁)) → (isNum₂ : True (isNumeric? t₂)) → Term Σ Γ Δ t₁ → Term Σ Γ Δ t₂ → Term Σ Γ Δ (combineNumeric t₁ t₂ isNum₁ isNum₂)
+[ int , int , _ , _ ][ t + t′ ] = func₂ (λ (lift x) (lift y) → lift (x ℤ.+ y)) t t′
+[ int , real , _ , _ ][ t + t′ ] = func₂ (λ (lift x) (lift y) → lift (x /1 ℝ.+ y)) t t′
+[ real , int , _ , _ ][ t + t′ ] = func₂ (λ (lift x) (lift y) → lift (x ℝ.+ y /1)) t t′
+[ real , real , _ , _ ][ t + t′ ] = func₂ (λ (lift x) (lift y) → lift (x ℝ.+ y)) t t′
+
+[_,_,_,_][_*_] : ∀ t₁ t₂ → (isNum₁ : True (isNumeric? t₁)) → (isNum₂ : True (isNumeric? t₂)) → Term Σ Γ Δ t₁ → Term Σ Γ Δ t₂ → Term Σ Γ Δ (combineNumeric t₁ t₂ isNum₁ isNum₂)
+[ int , int , _ , _ ][ t * t′ ] = func₂ (λ (lift x) (lift y) → lift (x ℤ.* y)) t t′
+[ int , real , _ , _ ][ t * t′ ] = func₂ (λ (lift x) (lift y) → lift (x /1 ℝ.* y)) t t′
+[ real , int , _ , _ ][ t * t′ ] = func₂ (λ (lift x) (lift y) → lift (x ℝ.* y /1)) t t′
+[ real , real , _ , _ ][ t * t′ ] = func₂ (λ (lift x) (lift y) → lift (x ℝ.* y)) t t′
+
+[_][_^_] : IsNumeric t → Term Σ Γ Δ t → ℕ → Term Σ Γ Δ t
+[ int ][ t ^ n ] = func₁ (lift ∘ (ℤ′._^′ n) ∘ lower) t
+[ real ][ t ^ n ] = func₁ (lift ∘ (ℝ′._^′ n) ∘ lower) t
+
+2≉0 : Set _
+2≉0 = ¬ 2 ℝ′.×′ 1ℝ ℝ.≈ 0ℝ
+
+[_][_>>_] : 2≉0 → Term Σ Γ Δ int → ℕ → Term Σ Γ Δ int
+[ 2≉0 ][ t >> n ] = func₁ (lift ∘ ⌊_⌋ ∘ (ℝ._* 2≉0 ℝ.⁻¹ ℝ′.^′ n) ∘ _/1 ∘ lower) t
+
+-- 0 of y is 0 of result
+join′ : ∀ t → ⟦ asType t m ⟧ₜ → ⟦ asType t n ⟧ₜ → ⟦ asType t (n ℕ.+ m) ⟧ₜ
+join′ bits = flip _++_
+join′ (array t) = flip _++_
+
+take′ : ∀ t m {n} → ⟦ asType t (m ℕ.+ n) ⟧ₜ → ⟦ asType t m ⟧ₜ
+take′ bits m = Vec.take m
+take′ (array t) m = Vec.take m
+
+drop′ : ∀ t m {n} → ⟦ asType t (m ℕ.+ n) ⟧ₜ → ⟦ asType t n ⟧ₜ
+drop′ bits m = Vec.drop m
+drop′ (array t) m = Vec.drop m
+
+private
+ m≤n⇒m+k≡n : ∀ {m n} → m ℕ.≤ n → ∃ λ k → m ℕ.+ k ≡ n
+ m≤n⇒m+k≡n ℕ.z≤n = _ , refl
+ m≤n⇒m+k≡n (ℕ.s≤s m≤n) = dmap id (cong suc) (m≤n⇒m+k≡n m≤n)
+
+ slicedSize : ∀ n m (i : Fin (suc n)) → ∃ λ k → n ℕ.+ m ≡ Fin.toℕ i ℕ.+ (m ℕ.+ k) × Fin.toℕ i ℕ.+ k ≡ n
+ slicedSize n m i = k , (begin
+ n ℕ.+ m ≡˘⟨ cong (ℕ._+ m) (proj₂ i+k≡n) ⟩
+ (Fin.toℕ i ℕ.+ k) ℕ.+ m ≡⟨ ℕₚ.+-assoc (Fin.toℕ i) k m ⟩
+ Fin.toℕ i ℕ.+ (k ℕ.+ m) ≡⟨ cong (Fin.toℕ i ℕ.+_) (ℕₚ.+-comm k m) ⟩
+ Fin.toℕ i ℕ.+ (m ℕ.+ k) ∎) ,
+ proj₂ i+k≡n
+ where
+ open ≡-Reasoning
+ i+k≡n = m≤n⇒m+k≡n (ℕₚ.≤-pred (Finₚ.toℕ<n i))
+ k = proj₁ i+k≡n
+
+-- 0 of x is i of result
+splice′ : ∀ t → ⟦ asType t m ⟧ₜ → ⟦ asType t n ⟧ₜ → ⟦ fin (suc n) ⟧ₜ → ⟦ asType t (n ℕ.+ m) ⟧ₜ
+splice′ {m = m} t x y (lift i) = cast′ t eq (join′ t (join′ t high x) low)
+ where
+ reasoning = slicedSize _ m i
+ k = proj₁ reasoning
+ n≡i+k = sym (proj₂ (proj₂ reasoning))
+ low = take′ t (Fin.toℕ i) (cast′ t n≡i+k y)
+ high = drop′ t (Fin.toℕ i) (cast′ t n≡i+k y)
+ eq = sym (proj₁ (proj₂ reasoning))
+
+splice : ∀ t → Term Σ Γ Δ (asType t m) → Term Σ Γ Δ (asType t n) → Term Σ Γ Δ (fin (suc n)) → Term Σ Γ Δ (asType t (n ℕ.+ m))
+splice τ t₁ t₂ t′ = func (λ (x , y , i , _) → splice′ τ x y i) (t₁ ∷ t₂ ∷ t′ ∷ [])
+
+-- i of x is 0 of first
+cut′ : ∀ t → ⟦ asType t (n ℕ.+ m) ⟧ₜ → ⟦ fin (suc n) ⟧ₜ → ⟦ asType t m ∷ asType t n ∷ [] ⟧ₜ′
+cut′ {m = m} t x (lift i) = middle , cast′ t i+k≡n (join′ t high low) , _
+ where
+ reasoning = slicedSize _ m i
+ k = proj₁ reasoning
+ i+k≡n = proj₂ (proj₂ reasoning)
+ eq = proj₁ (proj₂ reasoning)
+ low = take′ t (Fin.toℕ i) (cast′ t eq x)
+ middle = take′ t m (drop′ t (Fin.toℕ i) (cast′ t eq x))
+ high = drop′ t m (drop′ t (Fin.toℕ i) (cast′ t eq x))
+
+cut : ∀ t → Term Σ Γ Δ (asType t (n ℕ.+ m)) → Term Σ Γ Δ (fin (suc n)) → Term Σ Γ Δ (tuple _ (asType t m ∷ asType t n ∷ []))
+cut τ t t′ = func₂ (cut′ τ) t t′
+
+flatten : ∀ {ms : Vec ℕ n} → ⟦ Vec.map fin ms ⟧ₜ′ → All Fin ms
+flatten {ms = []} _ = []
+flatten {ms = _ ∷ ms} (lift x , xs) = x ∷ flatten xs
+
+𝒦 : Literal t → Term Σ Γ Δ t
+𝒦 (x ′b) = func₀ (lift x)
+𝒦 (x ′i) = func₀ (lift (x ℤ′.×′ 1ℤ))
+𝒦 (x ′f) = func₀ (lift x)
+𝒦 (x ′r) = func₀ (lift (x ℝ′.×′ 1ℝ))
+𝒦 (x ′x) = func₀ (lift (Bool.if x then 1𝔹 else 0𝔹))
+𝒦 ([] ′xs) = func₀ []
+𝒦 ((x ∷ xs) ′xs) = func₂ (flip Vec._∷ʳ_) (𝒦 (x ′x)) (𝒦 (xs ′xs))
+𝒦 (x ′a) = func₁ Vec.replicate (𝒦 x)
+
+module _ (2≉0 : 2≉0) where
+ ℰ : Code.Expression Σ Γ t → Term Σ Γ Δ t
ℰ e = (uncurry helper) (M.elimFunctions e)
where
1+m⊔n≡1+k : ∀ m n → ∃ λ k → suc m ℕ.⊔ n ≡ suc k
@@ -181,142 +309,49 @@ module _ {Σ : Vec Type o} (2≉0 : ¬ 2 ℝ′.×′ 1ℝ ℝ.≈ 0ℝ) where
pull-last {0} {0} refl = refl
pull-last {suc x} {0} ()
- equal : HasEquality t → ⟦ t ⟧ₜ → ⟦ t ⟧ₜ → ⟦ bool ⟧ₜ
- equal bool (lift x) (lift y) = lift (does (x Bool.≟ y))
- equal int (lift x) (lift y) = lift (does (x ≟ᶻ y))
- equal fin (lift x) (lift y) = lift (does (x Fin.≟ y))
- equal real (lift x) (lift y) = lift (does (x ≟ʳ y))
- equal bit (lift x) (lift y) = lift (does (x ≟ᵇ₁ y))
- equal bits [] [] = lift (Bool.true)
- equal bits (x ∷ xs) (y ∷ ys) = lift (lower (equal bit x y) Bool.∧ lower (equal bits xs ys))
-
- less : IsNumeric t → ⟦ t ⟧ₜ → ⟦ t ⟧ₜ → ⟦ bool ⟧ₜ
- less int (lift x) (lift y) = lift (does (x <ᶻ? y))
- less real (lift x) (lift y) = lift (does (x <ʳ? y))
-
- box : ∀ t → ⟦ elemType t ⟧ₜ → ⟦ asType t 1 ⟧ₜ
- box bits x = x ∷ []
- box (array t) x = x ∷ []
-
- unboxed : ∀ t → ⟦ asType t 1 ⟧ₜ → ⟦ elemType t ⟧ₜ
- unboxed bits (x ∷ []) = x
- unboxed (array t) (x ∷ []) = x
-
- casted : ∀ t {i j} → .(eq : i ≡ j) → ⟦ asType t i ⟧ₜ → ⟦ asType t j ⟧ₜ
- casted bits {j = 0} eq [] = []
- casted bits {j = suc j} eq (x ∷ xs) = x ∷ casted bits (ℕₚ.suc-injective eq) xs
- casted (array t) {j = 0} eq [] = []
- casted (array t) {j = suc j} eq (x ∷ xs) = x ∷ casted (array t) (ℕₚ.suc-injective eq) xs
-
- neg : IsNumeric t → ⟦ t ⟧ₜ → ⟦ t ⟧ₜ
- neg int (lift x) = lift (ℤ.- x)
- neg real (lift x) = lift (ℝ.- x)
-
- add : (isNum₁ : True (isNumeric? t₁)) → (isNum₂ : True (isNumeric? t₂)) → ⟦ t₁ ⟧ₜ → ⟦ t₂ ⟧ₜ → ⟦ combineNumeric t₁ t₂ {isNum₁} {isNum₂} ⟧ₜ
- add {int} {int} _ _ (lift x) (lift y) = lift (x ℤ.+ y)
- add {int} {real} _ _ (lift x) (lift y) = lift (x /1 ℝ.+ y)
- add {real} {int} _ _ (lift x) (lift y) = lift (x ℝ.+ y /1)
- add {real} {real} _ _ (lift x) (lift y) = lift (x ℝ.+ y)
-
- mul : (isNum₁ : True (isNumeric? t₁)) → (isNum₂ : True (isNumeric? t₂)) → ⟦ t₁ ⟧ₜ → ⟦ t₂ ⟧ₜ → ⟦ combineNumeric t₁ t₂ {isNum₁} {isNum₂} ⟧ₜ
- mul {int} {int} _ _ (lift x) (lift y) = lift (x ℤ.* y)
- mul {int} {real} _ _ (lift x) (lift y) = lift (x /1 ℝ.* y)
- mul {real} {int} _ _ (lift x) (lift y) = lift (x ℝ.* y /1)
- mul {real} {real} _ _ (lift x) (lift y) = lift (x ℝ.* y)
-
- pow : IsNumeric t → ⟦ t ⟧ₜ → ℕ → ⟦ t ⟧ₜ
- pow int (lift x) y = lift (x ℤ′.^′ y)
- pow real (lift x) y = lift (x ℝ′.^′ y)
-
- shift : ⟦ int ⟧ₜ → ℕ → ⟦ int ⟧ₜ
- shift (lift x) n = lift (⌊ x /1 ℝ.* 2≉0 ℝ.⁻¹ ℝ′.^′ n ⌋)
-
- flatten : ∀ {ms : Vec ℕ n} → ⟦ Vec.map fin ms ⟧ₜ′ → All Fin ms
- flatten {ms = []} _ = []
- flatten {ms = _ ∷ ms} (lift x , xs) = x ∷ flatten xs
-
- private
- m≤n⇒m+k≡n : ∀ {m n} → m ℕ.≤ n → ∃ λ k → m ℕ.+ k ≡ n
- m≤n⇒m+k≡n ℕ.z≤n = _ , refl
- m≤n⇒m+k≡n (ℕ.s≤s m≤n) = dmap id (cong suc) (m≤n⇒m+k≡n m≤n)
-
- slicedSize : ∀ n m (i : Fin (suc n)) → ∃ λ k → n ℕ.+ m ≡ Fin.toℕ i ℕ.+ (m ℕ.+ k) × Fin.toℕ i ℕ.+ k ≡ n
- slicedSize n m i = k , (begin
- n ℕ.+ m ≡˘⟨ cong (ℕ._+ m) (proj₂ i+k≡n) ⟩
- (Fin.toℕ i ℕ.+ k) ℕ.+ m ≡⟨ ℕₚ.+-assoc (Fin.toℕ i) k m ⟩
- Fin.toℕ i ℕ.+ (k ℕ.+ m) ≡⟨ cong (Fin.toℕ i ℕ.+_) (ℕₚ.+-comm k m) ⟩
- Fin.toℕ i ℕ.+ (m ℕ.+ k) ∎) ,
- proj₂ i+k≡n
- where
- open ≡-Reasoning
- i+k≡n = m≤n⇒m+k≡n (ℕₚ.≤-pred (Finₚ.toℕ<n i))
- k = proj₁ i+k≡n
-
- -- 0 of y is 0 of result
- join : ∀ t → ⟦ asType t m ⟧ₜ → ⟦ asType t n ⟧ₜ → ⟦ asType t (n ℕ.+ m) ⟧ₜ
- join bits xs ys = ys ++ xs
- join (array t) xs ys = ys ++ xs
-
- take : ∀ t i {j} → ⟦ asType t (i ℕ.+ j) ⟧ₜ → ⟦ asType t i ⟧ₜ
- take bits i xs = Vec.take i xs
- take (array t) i xs = Vec.take i xs
-
- drop : ∀ t i {j} → ⟦ asType t (i ℕ.+ j) ⟧ₜ → ⟦ asType t j ⟧ₜ
- drop bits i xs = Vec.drop i xs
- drop (array t) i xs = Vec.drop i xs
-
- -- 0 of x is i of result
- spliced : ∀ t {m n} → ⟦ asType t m ⟧ₜ → ⟦ asType t n ⟧ₜ → ⟦ fin (suc n) ⟧ₜ → ⟦ asType t (n ℕ.+ m) ⟧ₜ
- spliced t {m} x y (lift i) = casted t eq (join t (join t high x) low)
- where
- reasoning = slicedSize _ m i
- k = proj₁ reasoning
- n≡i+k = sym (proj₂ (proj₂ reasoning))
- low = take t (Fin.toℕ i) (casted t n≡i+k y)
- high = drop t (Fin.toℕ i) (casted t n≡i+k y)
- eq = sym (proj₁ (proj₂ reasoning))
-
- -- i of x is 0 of first
- sliced : ∀ t {m n} → ⟦ asType t (n ℕ.+ m) ⟧ₜ → ⟦ fin (suc n) ⟧ₜ → ⟦ asType t m ∷ asType t n ∷ [] ⟧ₜ′
- sliced t {m} x (lift i) = middle , casted t i+k≡n (join t high low) , _
- where
- reasoning = slicedSize _ m i
- k = proj₁ reasoning
- i+k≡n = proj₂ (proj₂ reasoning)
- eq = proj₁ (proj₂ reasoning)
- low = take t (Fin.toℕ i) (casted t eq x)
- middle = take t m (drop t (Fin.toℕ i) (casted t eq x))
- high = drop t m (drop t (Fin.toℕ i) (casted t eq x))
-
- helper : ∀ (e : Expression Γ t) → M.callDepth e ≡ 0 → Term Σ Γ Δ t
+ helper : ∀ (e : Code.Expression Σ Γ t) → M.callDepth e ≡ 0 → Term Σ Γ Δ t
helper (Code.lit x) eq = 𝒦 x
helper (Code.state i) eq = state i
helper (Code.var i) eq = var i
- helper (Code.abort e) eq = func (λ ()) (helper e eq ∷ [])
- helper (_≟_ {hasEquality = hasEq} e e₁) eq = func (λ (x , y , _) → equal (toWitness hasEq) x y) (helper e (pull-0₂ eq) ∷ helper e₁ (pull-last eq) ∷ [])
- helper (_<?_ {isNumeric = isNum} e e₁) eq = func (λ (x , y , _) → less (toWitness isNum) x y) (helper e (pull-0₂ eq) ∷ helper e₁ (pull-last eq) ∷ [])
- helper (Code.inv e) eq = func (λ (lift b , _) → lift (Bool.not b)) (helper e eq ∷ [])
- helper (e Code.&& e₁) eq = func (λ (lift b , lift b₁ , _) → lift (b Bool.∧ b₁)) (helper e (pull-0₂ eq) ∷ helper e₁ (pull-last eq) ∷ [])
- helper (e Code.|| e₁) eq = func (λ (lift b , lift b₁ , _) → lift (b Bool.∨ b₁)) (helper e (pull-0₂ eq) ∷ helper e₁ (pull-last eq) ∷ [])
- helper (Code.not e) eq = func (λ (xs , _) → Vec.map (lift ∘ 𝔹.¬_ ∘ lower) xs) (helper e eq ∷ [])
- helper (e Code.and e₁) eq = func (λ (xs , ys , _) → Vec.zipWith (lift ∘₂ 𝔹._∧_ ) (Vec.map lower xs) (Vec.map lower ys)) (helper e (pull-0₂ eq) ∷ helper e₁ (pull-last eq) ∷ [])
- helper (e Code.or e₁) eq = func (λ (xs , ys , _) → Vec.zipWith (lift ∘₂ 𝔹._∨_ ) (Vec.map lower xs) (Vec.map lower ys)) (helper e (pull-0₂ eq) ∷ helper e₁ (pull-last eq) ∷ [])
- helper ([_] {t = t} e) eq = func (λ (x , _) → box t x) (helper e eq ∷ [])
- helper (Code.unbox {t = t} e) eq = func (λ (x , _) → unboxed t x) (helper e eq ∷ [])
- helper (Code.splice {t = t} e e₁ e₂) eq = func (λ (x , y , i , _) → spliced t x y i) (helper e (pull-0₃ eq) ∷ helper e₁ (pull-1₃ (M.callDepth e) eq) ∷ helper e₂ (pull-last eq) ∷ [])
- helper (Code.cut {t = t} e e₁) eq = func (λ (x , i , _) → sliced t x i) (helper e (pull-0₂ eq) ∷ helper e₁ (pull-last eq) ∷ [])
- helper (Code.cast {t = t} i≡j e) eq = func (λ (x , _) → casted t i≡j x) (helper e eq ∷ [])
- helper (-_ {isNumeric = isNum} e) eq = func (λ (x , _) → neg (toWitness isNum) x) (helper e eq ∷ [])
- helper (_+_ {isNumeric₁ = isNum₁} {isNumeric₂ = isNum₂} e e₁) eq = func (λ (x , y , _) → add isNum₁ isNum₂ x y) (helper e (pull-0₂ eq) ∷ helper e₁ (pull-last eq) ∷ [])
- helper (_*_ {isNumeric₁ = isNum₁} {isNumeric₂ = isNum₂} e e₁) eq = func (λ (x , y , _) → mul isNum₁ isNum₂ x y) (helper e (pull-0₂ eq) ∷ helper e₁ (pull-last eq) ∷ [])
- helper (_^_ {isNumeric = isNum} e y) eq = func (λ (x , _) → pow (toWitness isNum) x y) (helper e eq ∷ [])
- helper (e >> n) eq = func (λ (x , _) → shift x n) (helper e eq ∷ [])
- helper (Code.rnd e) eq = func (λ (lift x , _) → lift ⌊ x ⌋) (helper e eq ∷ [])
- helper (Code.fin f e) eq = func (λ (xs , _) → lift (f (flatten xs))) (helper e eq ∷ [])
- helper (Code.asInt e) eq = func (λ (lift x , _) → lift (Fin.toℕ x ℤ′.×′ 1ℤ)) (helper e eq ∷ [])
- helper Code.nil eq = func (λ args → _) []
- helper (Code.cons e e₁) eq = func (λ (x , xs , _) → x , xs) (helper e (pull-0₂ eq) ∷ helper e₁ (pull-last eq) ∷ [])
- helper (Code.head e) eq = func (λ ((x , _) , _) → x) (helper e eq ∷ [])
- helper (Code.tail e) eq = func (λ ((_ , xs) , _) → xs) (helper e eq ∷ [])
+ helper (Code.abort e) eq = func₁ (λ ()) (helper e eq)
+ helper (Code._≟_ {hasEquality = hasEq} e e₁) eq = [ toWitness hasEq ][ helper e (pull-0₂ eq) ≟ helper e₁ (pull-last eq) ]
+ helper (Code._<?_ {isNumeric = isNum} e e₁) eq = [ toWitness isNum ][ helper e (pull-0₂ eq) <? helper e₁ (pull-last eq) ]
+ helper (Code.inv e) eq = func₁ (lift ∘ Bool.not ∘ lower) (helper e eq)
+ helper (e Code.&& e₁) eq = func₂ (λ (lift x) (lift y) → lift (x Bool.∧ y)) (helper e (pull-0₂ eq)) (helper e₁ (pull-last eq))
+ helper (e Code.|| e₁) eq = func₂ (λ (lift x) (lift y) → lift (x Bool.∨ y)) (helper e (pull-0₂ eq)) (helper e₁ (pull-last eq))
+ helper (Code.not e) eq = func₁ (Vec.map (lift ∘ 𝔹.¬_ ∘ lower)) (helper e eq)
+ helper (e Code.and e₁) eq = func₂ (λ xs ys → Vec.zipWith (λ (lift x) (lift y) → lift (x 𝔹.∧ y)) xs ys) (helper e (pull-0₂ eq)) (helper e₁ (pull-last eq))
+ helper (e Code.or e₁) eq = func₂ (λ xs ys → Vec.zipWith (λ (lift x) (lift y) → lift (x 𝔹.∨ y)) xs ys) (helper e (pull-0₂ eq)) (helper e₁ (pull-last eq))
+ helper (Code.[_] {t = t} e) eq = [ t ][ helper e eq ]
+ helper (Code.unbox {t = t} e) eq = unbox t (helper e eq)
+ helper (Code.splice {t = t} e e₁ e₂) eq = splice t (helper e (pull-0₃ eq)) (helper e₁ (pull-1₃ (M.callDepth e) eq)) (helper e₂ (pull-last eq))
+ helper (Code.cut {t = t} e e₁) eq = cut t (helper e (pull-0₂ eq)) (helper e₁ (pull-last eq))
+ helper (Code.cast {t = t} i≡j e) eq = cast t i≡j (helper e eq)
+ helper (Code.-_ {isNumeric = isNum} e) eq = [ toWitness isNum ][- helper e eq ]
+ helper (Code._+_ {isNumeric₁ = isNum₁} {isNumeric₂ = isNum₂} e e₁) eq = [ _ , _ , isNum₁ , isNum₂ ][ helper e (pull-0₂ eq) + helper e₁ (pull-last eq) ]
+ helper (Code._*_ {isNumeric₁ = isNum₁} {isNumeric₂ = isNum₂} e e₁) eq = [ _ , _ , isNum₁ , isNum₂ ][ helper e (pull-0₂ eq) * helper e₁ (pull-last eq) ]
+ helper (Code._^_ {isNumeric = isNum} e y) eq = [ toWitness isNum ][ helper e eq ^ y ]
+ helper (e Code.>> n) eq = [ 2≉0 ][ helper e eq >> n ]
+ helper (Code.rnd e) eq = func₁ (lift ∘ ⌊_⌋ ∘ lower) (helper e eq)
+ helper (Code.fin f e) eq = func₁ (lift ∘ f ∘ flatten) (helper e eq)
+ helper (Code.asInt e) eq = func₁ (lift ∘ (ℤ′._×′ 1ℤ) ∘ Fin.toℕ ∘ lower) (helper e eq)
+ helper Code.nil eq = func₀ _
+ helper (Code.cons e e₁) eq = func₂ _,_ (helper e (pull-0₂ eq)) (helper e₁ (pull-last eq))
+ helper (Code.head e) eq = func₁ proj₁ (helper e eq)
+ helper (Code.tail e) eq = func₁ proj₂ (helper e eq)
helper (Code.call f es) eq = contradiction (trans (sym eq) (proj₂ (1+m⊔n≡1+k (M.funCallDepth f) (M.callDepth′ es)))) ℕₚ.0≢1+n
helper (Code.if e then e₁ else e₂) eq = func (λ (lift b , x , x₁ , _) → Bool.if b then x else x₁) (helper e (pull-0₃ eq) ∷ helper e₁ (pull-1₃ (M.callDepth e) eq) ∷ helper e₂ (pull-last eq) ∷ [])
+
+ subst : Term Σ Γ Δ t → {e : Code.Expression Σ Γ t′} → Code.CanAssign Σ e → Term Σ Γ Δ t′ → Term Σ Γ Δ t
+ subst t (Code.state i) t′ = substState t i t′
+ subst t (Code.var i) t′ = substVar t i t′
+ subst t (Code.abort e) t′ = func₁ (λ ()) (ℰ e)
+ subst t (Code.[_] {t = τ} ref) t′ = subst t ref (unbox τ t′)
+ subst t (Code.unbox {t = τ} ref) t′ = subst t ref [ τ ][ t′ ]
+ subst t (Code.splice {t = τ} ref ref₁ e₃) t′ = subst (subst t ref (func₁ proj₁ (cut τ t′ (ℰ e₃)))) ref₁ (func₁ (proj₁ ∘ proj₂) (cut τ t′ (ℰ e₃)))
+ subst t (Code.cut {t = τ} ref e₂) t′ = subst t ref (splice τ (func₁ proj₁ t′) (func₁ (proj₁ ∘ proj₂) t′) (ℰ e₂))
+ subst t (Code.cast {t = τ} eq ref) t′ = subst t ref (cast τ (sym eq) t′)
+ subst t Code.nil t′ = t
+ subst t (Code.cons ref ref₁) t′ = subst (subst t ref (func₁ proj₁ t′)) ref₁ (func₁ proj₂ t′)
+ subst t (Code.head {e = e} ref) t′ = subst t ref (func₂ _,_ t′ (func₁ proj₂ (ℰ e)))
+ subst t (Code.tail {t = τ} {e = e} ref) t′ = subst t ref (func₂ {t₁ = τ} _,_ (func₁ proj₁ (ℰ e)) t′)
diff --git a/src/Helium/Semantics/Denotational/Core.agda b/src/Helium/Semantics/Denotational/Core.agda
index e605439..ec2a374 100644
--- a/src/Helium/Semantics/Denotational/Core.agda
+++ b/src/Helium/Semantics/Denotational/Core.agda
@@ -98,12 +98,12 @@ tupTail [] x = _
tupTail (_ ∷ _) (x , xs) = xs
equal : ∀ {t} → HasEquality t → ⟦ t ⟧ₜ → ⟦ t ⟧ₜ → Bool
-equal bool x y = does (x Bool.≟ y)
-equal int x y = does (x ≟ᶻ y)
-equal fin x y = does (x Fin.≟ y)
-equal real x y = does (x ≟ʳ y)
-equal bit x y = does (x ≟ᵇ₁ y)
-equal bits x y = does (x ≟ᵇ y)
+equal bool x y = does (x Bool.≟ y)
+equal int x y = does (x ≟ᶻ y)
+equal fin x y = does (x Fin.≟ y)
+equal real x y = does (x ≟ʳ y)
+equal bit x y = does (x ≟ᵇ₁ y)
+equal (bits _) x y = does (x ≟ᵇ y)
comp : ∀ {t} → IsNumeric t → ⟦ t ⟧ₜ → ⟦ t ⟧ₜ → Bool
comp int x y = does (x <ᶻ? y)
@@ -180,13 +180,13 @@ neg : ∀ {t} → IsNumeric t → ⟦ t ⟧ₜ → ⟦ t ⟧ₜ
neg int x = ℤ.- x
neg real x = ℝ.- x
-add : ∀ {t₁ t₂} (isNum₁ : True (isNumeric? t₁)) (isNum₂ : True (isNumeric? t₂)) → ⟦ t₁ ⟧ₜ → ⟦ t₂ ⟧ₜ → ⟦ combineNumeric t₁ t₂ {isNum₁} {isNum₂} ⟧ₜ
+add : ∀ {t₁ t₂} (isNum₁ : True (isNumeric? t₁)) (isNum₂ : True (isNumeric? t₂)) → ⟦ t₁ ⟧ₜ → ⟦ t₂ ⟧ₜ → ⟦ combineNumeric t₁ t₂ isNum₁ isNum₂ ⟧ₜ
add {t₁ = int} {t₂ = int} _ _ x y = x ℤ.+ y
add {t₁ = int} {t₂ = real} _ _ x y = x /1 ℝ.+ y
add {t₁ = real} {t₂ = int} _ _ x y = x ℝ.+ y /1
add {t₁ = real} {t₂ = real} _ _ x y = x ℝ.+ y
-mul : ∀ {t₁ t₂} (isNum₁ : True (isNumeric? t₁)) (isNum₂ : True (isNumeric? t₂)) → ⟦ t₁ ⟧ₜ → ⟦ t₂ ⟧ₜ → ⟦ combineNumeric t₁ t₂ {isNum₁} {isNum₂} ⟧ₜ
+mul : ∀ {t₁ t₂} (isNum₁ : True (isNumeric? t₁)) (isNum₂ : True (isNumeric? t₂)) → ⟦ t₁ ⟧ₜ → ⟦ t₂ ⟧ₜ → ⟦ combineNumeric t₁ t₂ isNum₁ isNum₂ ⟧ₜ
mul {t₁ = int} {t₂ = int} _ _ x y = x ℤ.* y
mul {t₁ = int} {t₂ = real} _ _ x y = x /1 ℝ.* y
mul {t₁ = real} {t₂ = int} _ _ x y = x ℝ.* y /1