diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/Helium/Semantics/Denotational.agda | 179 | ||||
-rw-r--r-- | src/Helium/Semantics/Denotational/Core.agda | 136 |
2 files changed, 155 insertions, 160 deletions
diff --git a/src/Helium/Semantics/Denotational.agda b/src/Helium/Semantics/Denotational.agda index c2a3f4f..dce07e6 100644 --- a/src/Helium/Semantics/Denotational.agda +++ b/src/Helium/Semantics/Denotational.agda @@ -23,7 +23,7 @@ import Data.Nat.Properties as ℕₚ open import Data.Product using (∃; _×_; _,_; dmap) open import Data.Sum using ([_,_]′) open import Data.Vec.Functional as V using (Vector) -open import Function using (_$_) +open import Function using (_$_; _∘₂_) open import Function.Nary.NonDependent.Base open import Helium.Instructions import Helium.Semantics.Denotational.Core as Core @@ -69,61 +69,63 @@ ElmtMask = Bits 4 -- State properties -&R : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ (Fin 16) → Reference n Γ (Bits 32) +&R : ∀ {n ls} {Γ : Sets n ls} → PureExpr n Γ (Fin 16) → Reference n Γ (Bits 32) &R e = record - { get = λ σ ρ → e σ ρ >>= λ (σ , i) → just (σ , State.R σ i) - ; set = λ σ ρ x → e σ ρ >>= λ (σ , i) → just (record σ { R = V.updateAt i (λ _ → x) (State.R σ) } , ρ) + { get = λ σ ρ → State.R σ (e σ ρ) + ; set = λ x σ ρ → record σ { R = V.updateAt (e σ ρ) (λ _ → x) (State.R σ) } , ρ } -&S : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ (Fin 32) → Reference n Γ (Bits 32) +&S : ∀ {n ls} {Γ : Sets n ls} → PureExpr n Γ (Fin 32) → Reference n Γ (Bits 32) &S e = record - { get = λ σ ρ → e σ ρ >>= λ (σ , i) → just (σ , State.S σ i) - ; set = λ σ ρ x → e σ ρ >>= λ (σ , i) → just (record σ { S = V.updateAt i (λ _ → x) (State.S σ) } , ρ) + { get = λ σ ρ → State.S σ (e σ ρ) + ; set = λ x σ ρ → record σ { S = V.updateAt (e σ ρ) (λ _ → x) (State.S σ) } , ρ } -&Q : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ VecReg → Expr n Γ Beat → Reference n Γ (Bits 32) -&Q reg beat = &S (λ σ ρ → reg σ ρ >>= λ (σ , reg) → beat σ ρ >>= λ (σ , beat) → just (σ , combine reg beat)) +&Q : ∀ {n ls} {Γ : Sets n ls} → PureExpr n Γ VecReg → PureExpr n Γ Beat → Reference n Γ (Bits 32) +&Q reg beat = &S λ σ ρ → combine (reg σ ρ) (beat σ ρ) &FPSCR-QC : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ (Bits 1) &FPSCR-QC = record - { get = λ σ ρ → just (σ , State.QC σ) - ; set = λ σ ρ x → just (record σ { QC = x } , ρ) + { get = λ σ ρ → State.QC σ + ; set = λ x σ ρ → record σ { QC = x } , ρ } &VPR-P0 : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ (Bits 16) &VPR-P0 = record - { get = λ σ ρ → just (σ , State.P0 σ) - ; set = λ σ ρ x → just (record σ { P0 = x } , ρ) + { get = λ σ ρ → State.P0 σ + ; set = λ x σ ρ → record σ { P0 = x } , ρ } &VPR-mask : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ (Bits 8) &VPR-mask = record - { get = λ σ ρ → just (σ , State.mask σ) - ; set = λ σ ρ x → just (record σ { mask = x } , ρ) + { get = λ σ ρ → State.mask σ + ; set = λ x σ ρ → record σ { mask = x } , ρ } &AdvanceVPT : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ Bool &AdvanceVPT = record - { get = λ σ ρ → just (σ , State.advanceVPT σ) - ; set = λ σ ρ x → just (record σ { advanceVPT = x } , ρ) + { get = λ σ ρ → State.advanceVPT σ + ; set = λ x σ ρ → record σ { advanceVPT = x } , ρ } -- Reference properties &cast : ∀ {k m n ls} {Γ : Sets n ls} → .(eq : k ≡ m) → Reference n Γ (Bits k) → Reference n Γ (Bits m) &cast eq &v = record - { get = λ σ ρ → Reference.get &v σ ρ >>= λ (σ , v) → just (σ , cast eq v) - ; set = λ σ ρ x → Reference.set &v σ ρ (cast (sym eq) x) + { get = λ σ ρ → cast eq (Reference.get &v σ ρ) + ; set = λ x σ ρ → Reference.set &v (cast (sym eq) x) σ ρ } -slice : ∀ {k m n ls} {Γ : Sets n ls} → Reference n Γ (Bits m) → Expr n Γ (∃ λ (i : Fin (suc m)) → ∃ λ j → toℕ (i - j) ≡ k) → Reference n Γ (Bits k) +slice : ∀ {k m n ls} {Γ : Sets n ls} → Reference n Γ (Bits m) → PureExpr n Γ (∃ λ (i : Fin (suc m)) → ∃ λ j → toℕ (i - j) ≡ k) → Reference n Γ (Bits k) slice &v idx = record - { get = λ σ ρ → Reference.get &v σ ρ >>= λ (σ , v) → idx σ ρ >>= λ (σ , i , j , i-j≡k) → just (σ , cast i-j≡k (sliceᵇ i j v)) - ; set = λ σ ρ v → Reference.get &v σ ρ >>= λ (σ , v′) → idx σ ρ >>= λ (σ , i , j , i-j≡k) → Reference.set &v σ ρ (updateᵇ i j (cast (sym i-j≡k) v) v′) + { get = λ σ ρ → let (i , j , i-j≡k) = idx σ ρ in cast i-j≡k (sliceᵇ i j (Reference.get &v σ ρ)) + ; set = λ v σ ρ → + let (i , j , i-j≡k) = idx σ ρ in + Reference.set &v (updateᵇ i j (cast (sym (i-j≡k)) v) (Reference.get &v σ ρ)) σ ρ } -elem : ∀ {k n ls} {Γ : Sets n ls} m → Reference n Γ (Bits (k * m)) → Expr n Γ (Fin k) → Reference n Γ (Bits m) -elem m &v idx = slice &v λ σ ρ → idx σ ρ >>= λ (σ , i) → just (σ , helper _ _ i) +elem : ∀ {k n ls} {Γ : Sets n ls} m → Reference n Γ (Bits (k * m)) → PureExpr n Γ (Fin k) → Reference n Γ (Bits m) +elem m &v idx = slice &v (λ σ ρ → helper _ _ (idx σ ρ)) where helper : ∀ m n → Fin m → ∃ λ (i : Fin (suc (m * n))) → ∃ λ j → toℕ (i - j) ≡ n helper (suc m) n zero = inject+ (m * n) (fromℕ n) , # 0 , eq @@ -154,13 +156,14 @@ elem m &v idx = slice &v λ σ ρ → idx σ ρ >>= λ (σ , i) → just (σ , h -- General functions copyMasked : VecReg → Procedure 3 (Bits 32 , Beat , ElmtMask , _) -copyMasked dest = for 4 (lift ( - -- e result beat elmtMask - if ⦇ (λ x y → does (getᵇ y x ≟ᵇ 1b)) (!# 3) (!# 0) ⦈ - then - elem 8 (&Q ⦇ dest ⦈ (!# 2)) (!# 0) ≔ (! elem 8 (var (# 1)) (!# 0)) - else - skip)) +copyMasked dest = + for 4 ( + -- 0:e 1:result 2:beat 3:elmtMask + if ⦇ (λ x y → does (getᵇ y x ≟ᵇ 1b)) (↓ !# 3) (↓ !# 0) ⦈ + then + elem 8 (&Q (pure′ dest) (!# 2)) (!# 0) ≔ ↓! elem 8 (var (# 1)) (!# 0) + else skip) ∙ + ⦇ _ ⦈ module fun-sliceᶻ (≈ᶻ-trans : Transitive _≈ᶻ_) @@ -174,42 +177,54 @@ module fun-sliceᶻ open sliceᶻ ≈ᶻ-trans round∘⟦⟧ round-cong 0#-homo-round 2^n≢0 *ᶻ-identityʳ signedSatQ : ∀ n → Function 1 (ℤ , _) (Bits (suc n) × Bool) - signedSatQ n = - declare ⦇ true ⦈ $ ( - if ⦇ (λ i → does (1ℤ << n +ᶻ -ᶻ 1ℤ <?ᶻ i)) (!# 1) ⦈ + signedSatQ n = declare ⦇ true ⦈ $ + -- 0:sat 1:x + if ⦇ (λ i → does (1ℤ << n +ᶻ -ᶻ 1ℤ <?ᶻ i)) (↓ !# 1) ⦈ then var (# 1) ≔ ⦇ (1ℤ << n +ᶻ -ᶻ 1ℤ) ⦈ - else if ⦇ (λ i → does (-ᶻ 1ℤ << n <?ᶻ i)) (!# 1) ⦈ + else if ⦇ (λ i → does (-ᶻ 1ℤ << n <?ᶻ i)) (↓ !# 1) ⦈ then var (# 1) ≔ ⦇ (-ᶻ 1ℤ << n) ⦈ else - var (# 0) ≔ ⦇ false ⦈) ∙ - return ⦇ ⦇ (sliceᶻ (suc n) zero) (!# 1) ⦈ , !# 0 ⦈ + var (# 0) ≔ ⦇ false ⦈ ∙ + ⦇ ⦇ (sliceᶻ (suc n) zero) (↓ !# 1) ⦈ , (↓ !# 0) ⦈ advanceVPT : Procedure 1 (Beat , _) -advanceVPT = declare (! elem 4 &VPR-mask ⦇ hilow (!# 0) ⦈) $ - if ⦇ (λ x → does (x ≟ᵇ 1b ∶ 0b ∶ 0b ∶ 0b)) (!# 0) ⦈ +advanceVPT = declare (↓! elem 4 &VPR-mask (hilow ∘₂ !# 0)) $ + -- 0:vptState 1:beat + if ⦇ (λ x → does (x ≟ᵇ 1b ∶ 0b ∶ 0b ∶ 0b)) (↓ !# 0) ⦈ then var (# 0) ≔ ⦇ zeros ⦈ - else if ⦇ (λ x → does (x ≟ᵇ zeros {4})) (!# 0) ⦈ + else if ⦇ (λ x → does (x ≟ᵇ zeros {4})) (↓ !# 0) ⦈ then skip - else - (if ⦇ (hasBit (# 3)) (!# 0) ⦈ then - elem 4 &VPR-P0 (!# 1) ⟵ not - else skip ∙ - var (# 0) ⟵ λ x → sliceᵇ (# 3) zero x ∶ 0b) ∙ - if ⦇ (λ x → does (oddeven x Finₚ.≟ # 1)) (!# 1) ⦈ + else ( + if ⦇ (hasBit (# 3)) (↓ !# 0) ⦈ + then + elem 4 &VPR-P0 (!# 1) ⟵ not + else skip ∙ + (var (# 0) ⟵ λ x → sliceᵇ (# 3) zero x ∶ 0b)) ∙ + if ⦇ (λ x → does (oddeven x Finₚ.≟ # 1)) (↓ !# 1) ⦈ then - elem 4 &VPR-mask ⦇ hilow (!# 1) ⦈ ≔ !# 0 - else skip + elem 4 &VPR-mask (hilow ∘₂ !# 1) ≔ ↓ !# 0 + else skip ∙ + ⦇ _ ⦈ execBeats : Procedure 2 (Beat , ElmtMask , _) → Procedure 0 _ -execBeats inst = for 4 (lift ( - declare ⦇ ones ⦈ $ - if ⦇ (λ x → does (x ≟ᵇ zeros {4})) (! elem 4 &VPR-mask ⦇ hilow (!# 1) ⦈) ⦈ then skip else var (# 0) ≔ ! elem 4 &VPR-P0 (!# 1) ∙ - &AdvanceVPT ≔ ⦇ true ⦈ ∙ - ignore (call inst (⦇ !# 1 , !# 0 ⦈)) ∙ - if ! &AdvanceVPT then ignore (call advanceVPT (!# 1)) else skip)) +execBeats inst = declare ⦇ ones ⦈ $ + for 4 ( + -- 0:beat 1:elmtMask + if ⦇ (λ x → does (x ≟ᵇ zeros {4})) (↓! elem 4 &VPR-mask (hilow ∘₂ !# 0)) ⦈ + then + var (# 1) ≔ ⦇ ones ⦈ + else + var (# 1) ≔ ↓! elem 4 &VPR-P0 (!# 0) ∙ + &AdvanceVPT ≔ ⦇ true ⦈ ∙ + invoke inst ⦇ ↓ !# 0 , ↓ !# 1 ⦈ ∙ + if ↓! &AdvanceVPT + then + invoke advanceVPT (↓ !# 0) + else skip) ∙ + ⦇ _ ⦈ module _ (d : VecOp₂) @@ -218,18 +233,17 @@ module _ open VecOp₂ d vec-op₂ : Op₂ (Bits (toℕ esize)) → Procedure 2 (Beat , ElmtMask , _) - vec-op₂ op = declare ⦇ zeros ⦈ (declare (! &Q ⦇ src₁ ⦈ (!# 1)) ( - -- op₁ result beat elmtMask - for (toℕ elements) (lift ( - -- e op₁ result beat elmtMask + vec-op₂ op = declare ⦇ zeros ⦈ $ declare (↓! &Q (pure′ src₁) (!# 1)) $ + for (toℕ elements) ( + -- 0:e 1:op₁ 2:result 3:beat 4:elmntMask elem (toℕ esize) (&cast (sym e*e≡32) (var (# 2))) (!# 0) ≔ - ⦇ op - (! elem (toℕ esize) (&cast (sym e*e≡32) (var (# 1))) (!# 0)) - ([ (λ src₂ → ! slice (&R ⦇ src₂ ⦈) ⦇ (esize , zero , refl) ⦈) - , (λ src₂ → ! elem (toℕ esize) (&cast (sym e*e≡32) (&Q ⦇ src₂ ⦈ (!# 3))) (!# 0)) - ]′ src₂) ⦈ - )) ∙ - ignore (call (copyMasked dest) ⦇ !# 1 , ⦇ !# 2 , !# 3 ⦈ ⦈))) + (⦇ op + (↓! elem (toℕ esize) (&cast (sym e*e≡32) (var (# 1))) (!# 0)) + ([ (λ src₂ → ↓! slice (&R (pure′ src₂)) (pure′ (esize , zero , refl))) + , (λ src₂ → ↓! elem (toℕ esize) (&cast (sym e*e≡32) (&Q (pure′ src₂) (!# 3))) (!# 0)) + ]′ src₂) ⦈)) ∙ + invoke (copyMasked dest) ⦇ ↓ !# 1 , ⦇ ↓ !# 2 , ↓ !# 3 ⦈ ⦈ ∙ + ⦇ _ ⦈ -- Instruction semantics @@ -271,23 +285,24 @@ module _ eq m (suc i) = eq m i vqdmulh : VQDMulH → Procedure 2 (Beat , ElmtMask , _) - vqdmulh d = declare ⦇ zeros ⦈ (declare (! &Q ⦇ src₁ ⦈ (!# 1)) ( - -- op₁ result beat elmtMask - for (toℕ elements) (lift ( - -- e op₁ result beat elmtMask - declare - ⦇ (λ x y → (2ℤ *ᶻ sint x *ᶻ sint y +ᶻ rval) >> toℕ esize) - (! elem (toℕ esize) (&cast (sym e*e≡32) (var (# 1))) (!# 0)) - ([ (λ src₂ → ! slice (&R ⦇ src₂ ⦈) ⦇ (esize , zero , refl) ⦈) - , (λ src₂ → ! elem (toℕ esize) (&cast (sym e*e≡32) (&Q ⦇ src₂ ⦈ (!# 3))) (!# 0)) - ]′ src₂) ⦈ $ - declare ⦇ false ⦈ $ - -- sat value e op₁ result beat elmtMask - elem (toℕ esize) (&cast (sym e*e≡32) (var (# 4))) (!# 2) ,′ var (# 0) ≔ - call (signedSatQ (toℕ esize-1)) (!# 1) ∙ - if !# 0 then if ⦇ (λ m e → hasBit (combine e zero) (cast (sym e*e>>3≡4) m)) (!# 6) (!# 2) ⦈ then &FPSCR-QC ≔ ⦇ 1b ⦈ else skip else skip - )) ∙ - ignore (call (copyMasked dest) ⦇ !# 1 , ⦇ !# 2 , !# 3 ⦈ ⦈))) + vqdmulh d = declare ⦇ zeros ⦈ $ declare (↓! &Q (pure′ src₁) (!# 1)) $ declare ⦇ false ⦈ $ + for (toℕ elements) ( + -- 0:e 1:sat 2:op₁ 3:result 4:beat 5:elmntMask + elem (toℕ esize) (&cast (sym e*e≡32) (var (# 3))) (!# 0) ,′ var (# 1) ≔ + call (signedSatQ (toℕ esize-1)) + ⦇ (λ x y → (2ℤ *ᶻ sint x *ᶻ sint y +ᶻ rval) >> toℕ esize) + (↓! elem (toℕ esize) (&cast (sym e*e≡32) (var (# 2))) (!# 0)) + ([ (λ src₂ → ↓! slice (&R (pure′ src₂)) (pure′ (esize , zero , refl))) + , (λ src₂ → ↓! elem (toℕ esize) (&cast (sym e*e≡32) (&Q (pure′ src₂) (!# 4))) (!# 0)) + ]′ src₂) ⦈ ∙ + if ↓ !# 1 + then if ⦇ (λ m e → hasBit (combine e zero) (cast (sym e*e>>3≡4) m)) (↓ !# 5) (↓ !# 0) ⦈ + then + &FPSCR-QC ≔ ⦇ 1b ⦈ + else skip + else skip) ∙ + invoke (copyMasked dest) ⦇ ↓ !# 2 , ⦇ ↓ !# 3 , ↓ !# 4 ⦈ ⦈ ∙ + ⦇ _ ⦈ where open VQDMulH d rval = Bool.if rounding then 1ℤ << toℕ esize-1 else 0ℤ diff --git a/src/Helium/Semantics/Denotational/Core.agda b/src/Helium/Semantics/Denotational/Core.agda index 359fbd4..d92c1b2 100644 --- a/src/Helium/Semantics/Denotational/Core.agda +++ b/src/Helium/Semantics/Denotational/Core.agda @@ -14,13 +14,14 @@ module Helium.Semantics.Denotational.Core open import Algebra.Core open import Data.Bool as Bool using (Bool) open import Data.Fin hiding (lift) -open import Data.Maybe using (Maybe; just; nothing; map; _>>=_) open import Data.Nat using (ℕ; zero; suc) import Data.Nat.Properties as ℕₚ -open import Data.Product using (_×_; _,_; map₂; uncurry) +open import Data.Product hiding (_<*>_; _,′_) open import Data.Product.Nary.NonDependent +open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_]′) open import Data.Unit using (⊤) -open import Level renaming (suc to ℓsuc) hiding (lift) +open import Level renaming (suc to ℓsuc) hiding (zero) +open import Function using (_∘_; _∘₂_; _|>_) open import Function.Nary.NonDependent.Base open import Relation.Nullary.Decidable using (True) @@ -42,122 +43,101 @@ private update zero y (_ , xs) = y , xs update (suc i) y (x , xs) = x , update i y xs +PureExpr : ∀ n {ls} → Sets n ls → Set ℓ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′) +PureExpr n Γ τ = (σ : State) → (ρ : Product⊤ n Γ) → τ + Expr : ∀ n {ls} → Sets n ls → Set ℓ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′) -Expr _ Γ τ = (σ : State) → (ρ : Product⊤ _ Γ) → Maybe (State × τ) +Expr n Γ τ = (σ : State) → (ρ : Product⊤ n Γ) → State × τ + record Reference n {ls} (Γ : Sets n ls) (τ : Set ℓ) : Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′) where field - get : Expr n Γ τ - set : (σ : State) → (ρ : Product⊤ _ Γ) → τ → Maybe (State × Product⊤ _ Γ) - -Statement : ∀ n {ls} → Sets n ls → Set ℓ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′) -Statement n Γ τ = (cont : Expr n Γ τ) → Expr n Γ τ - -ForStatement : ∀ n {ls} → Sets n ls → Set ℓ → ℕ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′) -ForStatement n Γ τ m = (cont break : Expr n Γ τ) → Expr (suc n) (Fin m , Γ) τ + get : PureExpr n Γ τ + set : τ → (σ : State) → (ρ : Product⊤ n Γ) → State × Product⊤ n Γ Function : ∀ n {ls} → Sets n ls → Set ℓ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′) -Function = Statement +Function = Expr Procedure : ∀ n {ls} → Sets n ls → Set (⨆ n ls ⊔ ℓ′) Procedure n Γ = Function n Γ ⊤ +Block : ∀ n {ls} → Sets n ls → Set ℓ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′) +Block n Γ τ = (σ : State) → (ρ : Product⊤ n Γ) → State × (Product⊤ n Γ ⊎ τ) + -- Expressions -unknown : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ τ -unknown σ ρ = nothing +pure′ : ∀ {n ls} {Γ : Sets n ls} → τ → PureExpr n Γ τ +pure′ v σ ρ = v pure : ∀ {n ls} {Γ : Sets n ls} → τ → Expr n Γ τ -pure v σ ρ = just (σ , v) +pure v σ ρ = σ , v -apply : ∀ {n ls} {Γ : Sets n ls} → (τ → τ′) → Expr n Γ τ → Expr n Γ τ′ -apply f e σ ρ = map (map₂ f) (e σ ρ) +↓_ : ∀ {n ls} {Γ : Sets n ls} → PureExpr n Γ τ → Expr n Γ τ +(↓ e) σ ρ = σ , e σ ρ _<*>_ : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ (τ → τ′) → Expr n Γ τ → Expr n Γ τ′ -_<*>_ f e σ ρ = f σ ρ >>= λ (σ , f) → apply f e σ ρ +_<*>_ f e σ ρ = f σ ρ |> λ (σ , f) → map₂ f (e σ ρ) -!_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Expr n Γ τ +!_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → PureExpr n Γ τ ! r = Reference.get r +↓!_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Expr n Γ τ +↓! r = ↓ ! r + call : ∀ {m n ls₁ ls₂} {Γ : Sets m ls₁} {Δ : Sets n ls₂} → Function m Γ τ → Expr n Δ (Product m Γ) → Expr n Δ τ -call f e σ ρ = e σ ρ >>= λ (σ , v) → f unknown σ (toProduct⊤ _ v) +call f e σ ρ = e σ ρ |> map₂ (toProduct⊤ _) |> uncurry f + +declare : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ τ → Expr (suc n) (τ , Γ) τ′ → Expr n Γ τ′ +declare e s σ ρ = e σ ρ |> map₂ (_, ρ) |> uncurry s -- References var : ∀ {n ls} {Γ : Sets n ls} i → Reference n Γ (Projₙ Γ i) var i = record - { get = λ σ ρ → just (σ , projₙ _ i (toProduct _ ρ)) - ; set = λ σ ρ v → just (σ , update i v ρ) + { get = λ σ ρ → projₙ _ i (toProduct _ ρ) + ; set = λ v → curry (map₂ (update i v)) } -!#_ : ∀ {n ls} {Γ : Sets n ls} m {m<n : True (suc m ℕₚ.≤? n)} → Expr n Γ (Projₙ Γ (#_ m {n} {m<n})) -(!# m) {m<n} = ! (var (#_ m {m<n = m<n})) - -wknRef : ∀ {m ls} {Γ : Sets m ls} → Reference m Γ τ → Reference (suc m) (τ′ , Γ) τ -wknRef &x = record - { get = λ σ (_ , ρ) → Reference.get &x σ ρ - ; set = λ σ (v , ρ) x → Reference.set &x σ ρ x >>= λ (σ , ρ) → just (σ , (v , ρ)) - } +!#_ : ∀ {n ls} {Γ : Sets n ls} m {m<n : True (suc m ℕₚ.≤? n)} → PureExpr n Γ (Projₙ Γ (#_ m {n} {m<n})) +(!# m) {m<n} = ! var (#_ m {m<n = m<n}) _,′_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Reference n Γ τ′ → Reference n Γ (τ × τ′) &x ,′ &y = record - { get = λ σ ρ → Reference.get &x σ ρ >>= λ (σ , x) → Reference.get &y σ ρ >>= λ (σ , y) → just (σ , (x , y)) - ; set = λ σ ρ (x , y) → Reference.set &x σ ρ x >>= λ (σ , ρ) → Reference.set &y σ ρ y + { get = λ σ ρ → Reference.get &x σ ρ , Reference.get &y σ ρ + ; set = λ (x , y) σ ρ → uncurry (Reference.set &y y) (Reference.set &x x σ ρ) } --- Statements +-- Blocks infixr 1 _∙_ -infix 4 _≔_ _⟵_ infixl 2 if_then_else_ +infix 4 _≔_ _⟵_ -skip : ∀ {n ls} {Γ : Sets n ls} → Statement n Γ τ -skip cont = cont +skip : ∀ {n ls} {Γ : Sets n ls} → Block n Γ τ +skip σ ρ = σ , inj₁ ρ -ignore : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ τ → Statement n Γ τ′ -ignore e cont σ ρ = e σ ρ >>= λ (σ , _) → cont σ ρ +invoke : ∀ {m n ls₁ ls₂} {Γ : Sets m ls₁} {Δ : Sets n ls₂} → Procedure m Γ → Expr n Δ (Product m Γ) → Block n Δ τ +invoke f e σ ρ = call f e σ ρ |> map₂ (λ _ → inj₁ ρ) -return : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ τ → Statement n Γ τ -return e _ = e +_≔_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Expr n Γ τ → Block n Γ τ′ +(&x ≔ e) σ ρ = e σ ρ |> λ (σ , x) → Reference.set &x x σ ρ |> map₂ inj₁ -_≔_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Expr n Γ τ → Statement n Γ τ′ -(ref ≔ e) cont σ ρ = e σ ρ >>= λ (σ , v) → Reference.set ref σ ρ v >>= λ (σ , v) → cont σ v +_⟵_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Op₁ τ → Block n Γ τ′ +&x ⟵ e = &x ≔ ⦇ e (↓ (! &x)) ⦈ -_⟵_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Op₁ τ → Statement n Γ τ′ -ref ⟵ e = ref ≔ ⦇ e (! ref) ⦈ +if_then_else_ : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ Bool → Block n Γ τ → Block n Γ τ → Block n Γ τ +(if e then b₁ else b₂) σ ρ = e σ ρ |> λ (σ , b) → Bool.if b then b₁ σ ρ else b₂ σ ρ -label : ∀ {n ls} {Γ : Sets n ls} → smap _ (Reference n Γ) n Γ ⇉ Statement n Γ τ → Statement n Γ τ -label {n = n} s = uncurry⊤ₙ n s vars +for : ∀ {n ls} {Γ : Sets n ls} m → Block (suc n) (Fin m , Γ) τ → Block n Γ τ +for zero b σ ρ = σ , inj₁ ρ +for (suc m) b σ ρ with b σ (zero , ρ) +... | σ′ , inj₂ x = σ′ , inj₂ x +... | σ′ , inj₁ (_ , ρ′) = for m b′ σ′ ρ′ where - vars : ∀ {n ls} {Γ : Sets n ls} → Product⊤ n (smap _ (Reference n Γ) n Γ) - vars {zero} = _ - vars {suc n} = var (# 0) , mapAll _ _ wknRef vars - -declare : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ τ → Statement (suc n) (τ , Γ) τ′ → Statement n Γ τ′ -declare e s cont σ ρ = e σ ρ >>= λ (σ , v) → s (λ σ (_ , ρ) → cont σ ρ) σ (v , ρ) - -if_then_else_ : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ Bool → Statement n Γ τ → Statement n Γ τ → Statement n Γ τ -(if e then b₁ else b₂) cont σ ρ = e σ ρ >>= λ (σ , b) → Bool.if b then b₁ cont σ ρ else b₂ cont σ ρ - -for : ∀ {n ls} {Γ : Sets n ls} m → ForStatement n Γ τ m → Statement n Γ τ -for zero s cont σ ρ = cont σ ρ -for (suc m) s cont σ ρ = s (for m (λ cont break σ (i , ρ) → s cont break σ (suc i , ρ)) cont) cont σ (# 0 , ρ) - -_∙_ : ∀ {n ls} {Γ : Sets n ls} → Op₂ (Statement n Γ τ) -(s ∙ t) cont = s (t cont) - --- For statements - -infixr 9 _∙′_ - -lift : ∀ {m n ls} {Γ : Sets n ls} → Statement (suc n) (Fin m , Γ) τ → ForStatement n Γ τ m -lift s cont _ = s (λ σ (_ , ρ) → cont σ ρ) - -continue : ∀ {m n ls} {Γ : Sets n ls} → ForStatement n Γ τ m -continue cont break σ (_ , ρ) = cont σ ρ - -break : ∀ {m n ls} {Γ : Sets n ls} → ForStatement n Γ τ m -break cont break σ (_ , ρ) = break σ ρ + b′ : Block (suc _) (Fin m , _) _ + b′ σ (i , ρ) with b σ (suc i , ρ) + ... | σ′ , inj₂ x = σ′ , inj₂ x + ... | σ′ , inj₁ (_ , ρ′) = σ′ , inj₁ (i , ρ′) -_∙′_ : ∀ {m n ls} {Γ : Sets n ls} → Op₂ (ForStatement n Γ τ m) -(s ∙′ t) cont break σ (i , ρ) = s (λ σ ρ → t cont break σ (i , ρ)) break σ (i , ρ) +_∙_ : ∀ {n ls} {Γ : Sets n ls} → Block n Γ τ → Expr n Γ τ → Expr n Γ τ +(b ∙ e) σ τ = b σ τ |> λ (σ , ρ⊎x) → [ e σ , σ ,_ ]′ ρ⊎x |