From 91bc16d54ec0a6e5d904673951fe091a9973d9b4 Mon Sep 17 00:00:00 2001 From: Greg Brown Date: Tue, 18 Jan 2022 22:01:46 +0000 Subject: Define the semantics of pseudocode data types. --- .../Algebra/Ordered/StrictTotal/Structures.agda | 160 +++++++++++++++++---- 1 file changed, 135 insertions(+), 25 deletions(-) (limited to 'src/Helium/Algebra/Ordered/StrictTotal/Structures.agda') diff --git a/src/Helium/Algebra/Ordered/StrictTotal/Structures.agda b/src/Helium/Algebra/Ordered/StrictTotal/Structures.agda index 9dc0043..6f6b38d 100644 --- a/src/Helium/Algebra/Ordered/StrictTotal/Structures.agda +++ b/src/Helium/Algebra/Ordered/StrictTotal/Structures.agda @@ -18,11 +18,11 @@ module Helium.Algebra.Ordered.StrictTotal.Structures import Algebra.Consequences.Setoid as Consequences open import Algebra.Core open import Algebra.Definitions _≈_ -import Algebra.Structures _≈_ as Unordered +import Algebra.Structures _≈_ as NoOrder open import Data.Product using (_,_; proj₁; proj₂) open import Helium.Algebra.Core open import Helium.Algebra.Definitions _≈_ -open import Helium.Algebra.Structures _≈_ using (IsAlmostGroup) +import Helium.Algebra.Structures _≈_ as NoOrder′ open import Helium.Algebra.Ordered.Definitions _<_ open import Level using (_⊔_) @@ -52,26 +52,55 @@ record IsMagma (∙ : Op₂ A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where ∙-invariantʳ : RightInvariant ∙ ∙-invariantʳ = proj₂ ∙-invariant + module Unordered where + isMagma : NoOrder.IsMagma ∙ + isMagma = record { isEquivalence = isEquivalence ; ∙-cong = ∙-cong } + record IsSemigroup (∙ : Op₂ A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isMagma : IsMagma ∙ assoc : Associative ∙ open IsMagma isMagma public + hiding (module Unordered) + + module Unordered where + isSemigroup : NoOrder.IsSemigroup ∙ + isSemigroup = record + { isMagma = IsMagma.Unordered.isMagma isMagma + ; assoc = assoc + } + + open NoOrder.IsSemigroup isSemigroup public + using (isMagma) -record IsMonoid (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where +record IsMonoid (_∙_ : Op₂ A) (ε : A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field - isSemigroup : IsSemigroup ∙ - identity : Identity ε ∙ + isSemigroup : IsSemigroup _∙_ + identity : Identity ε _∙_ open IsSemigroup isSemigroup public + hiding (module Unordered) - identityˡ : LeftIdentity ε ∙ + identityˡ : LeftIdentity ε _∙_ identityˡ = proj₁ identity - identityʳ : RightIdentity ε ∙ + identityʳ : RightIdentity ε _∙_ identityʳ = proj₂ identity + identity² : (ε ∙ ε) ≈ ε + identity² = identityˡ ε + + module Unordered where + isMonoid : NoOrder.IsMonoid _∙_ ε + isMonoid = record + { isSemigroup = IsSemigroup.Unordered.isSemigroup isSemigroup + ; identity = identity + } + + open NoOrder.IsMonoid isMonoid public + using (isMagma; isSemigroup) + record IsGroup (_∙_ : Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isMonoid : IsMonoid _∙_ ε @@ -79,6 +108,7 @@ record IsGroup (_∙_ : Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Set (a ⊔ ℓ₁ ⁻¹-cong : Congruent₁ _⁻¹ open IsMonoid isMonoid public + hiding (module Unordered) infixl 6 _-_ _-_ : Op₂ A @@ -98,6 +128,17 @@ record IsGroup (_∙_ : Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Set (a ⊔ ℓ₁ uniqueʳ-⁻¹ = Consequences.assoc+id+invˡ⇒invʳ-unique strictTotalOrder.Eq.setoid ∙-cong assoc identity inverseˡ + module Unordered where + isGroup : NoOrder.IsGroup _∙_ ε _⁻¹ + isGroup = record + { isMonoid = IsMonoid.Unordered.isMonoid isMonoid + ; inverse = inverse + ; ⁻¹-cong = ⁻¹-cong + } + + open NoOrder.IsGroup isGroup public + using (isMagma; isSemigroup; isMonoid) + record IsAbelianGroup (∙ : Op₂ A) (ε : A) (⁻¹ : Op₁ A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field @@ -105,14 +146,25 @@ record IsAbelianGroup (∙ : Op₂ A) comm : Commutative ∙ open IsGroup isGroup public + hiding (module Unordered) + + module Unordered where + isAbelianGroup : NoOrder.IsAbelianGroup ∙ ε ⁻¹ + isAbelianGroup = record + { isGroup = IsGroup.Unordered.isGroup isGroup + ; comm = comm + } -record IsRing (+ * : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where + open NoOrder.IsAbelianGroup isAbelianGroup public + using (isMagma; isSemigroup; isMonoid; isGroup) + +record IsRing (+ _*_ : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field - +-isAbelianGroup : IsAbelianGroup + 0# -_ - *-isMonoid : Unordered.IsMonoid * 1# - distrib : * DistributesOver + - zero : Zero 0# * - preservesPositive : PreservesPositive 0# * + +-isAbelianGroup : IsAbelianGroup + 0# -_ + *-isMonoid : NoOrder.IsMonoid _*_ 1# + distrib : _*_ DistributesOver + + zero : Zero 0# _*_ + 0