From d5f3e7bc675a07bd04c746512c6f1b0b1250b55e Mon Sep 17 00:00:00 2001 From: Greg Brown Date: Sat, 8 Jan 2022 17:38:20 +0000 Subject: Make RawPseudocode contain its own bundles. --- src/Helium/Data/Pseudocode.agda | 283 ++++++++++++++++++++-------------------- 1 file changed, 141 insertions(+), 142 deletions(-) (limited to 'src/Helium/Data/Pseudocode.agda') diff --git a/src/Helium/Data/Pseudocode.agda b/src/Helium/Data/Pseudocode.agda index f683193..146dbf9 100644 --- a/src/Helium/Data/Pseudocode.agda +++ b/src/Helium/Data/Pseudocode.agda @@ -8,180 +8,179 @@ module Helium.Data.Pseudocode where +open import Algebra.Bundles using (RawRing) open import Algebra.Core -open import Data.Bool using (Bool; if_then_else_) -open import Data.Fin hiding (_+_; cast) -import Data.Fin.Properties as Finₚ -open import Data.Nat using (ℕ; zero; suc; _+_; _^_) -import Data.Vec as Vec +import Algebra.Definitions.RawSemiring as RS +open import Data.Bool.Base using (Bool; if_then_else_) +open import Data.Fin.Base as Fin hiding (cast) +import Data.Fin.Properties as Fₚ +import Data.Fin.Induction as Induction +open import Data.Nat.Base using (ℕ; zero; suc) +open import Data.Vec.Functional +open import Data.Vec.Functional.Relation.Binary.Pointwise using (Pointwise) +import Data.Vec.Functional.Relation.Binary.Pointwise.Properties as Pwₚ +open import Function using (_$_; _∘′_; id) +open import Helium.Algebra.Bundles using (RawField; RawBooleanAlgebra) open import Level using (_⊔_) renaming (suc to ℓsuc) -open import Relation.Binary using (REL; Rel; Symmetric; Transitive; Decidable) -open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym) -open import Relation.Nullary using (Dec; does) -open import Relation.Nullary.Decidable - -private - map-False : ∀ {p q} {P : Set p} {Q : Set q} {P? : Dec P} {Q? : Dec Q} → (P → Q) → False Q? → False P? - map-False ⇒ f = fromWitnessFalse (λ x → toWitnessFalse f (⇒ x)) +open import Relation.Binary.Core using (Rel) +open import Relation.Binary.Definitions using (Decidable) +open import Relation.Binary.PropositionalEquality as P using (_≡_) +open import Relation.Nullary using (does) +open import Relation.Nullary.Decidable.Core using (False; toWitnessFalse) record RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃ : Set (ℓsuc (b₁ ⊔ b₂ ⊔ i₁ ⊔ i₂ ⊔ i₃ ⊔ r₁ ⊔ r₂ ⊔ r₃)) where - infix 9 _^ᶻ_ _^ʳ_ - infix 8 _⁻¹ - infixr 7 _*ᶻ_ _*ʳ_ - infix 6 -ᶻ_ -ʳ_ - infixr 5 _+ᶻ_ _+ʳ_ _∶_ - infix 4 _≈ᵇ_ _≟ᵇ_ _≈ᶻ_ _≟ᶻ_ _<ᶻ_ _>_ _>>_ : ℤ → ℕ → ℤ - x >> n = (x div (2ℤ ^ᶻ n)) {2^n≢0 n} - - getᶻ : ℕ → ℤ → Bits 1 - getᶻ i x = if (does ((x mod (2ℤ ^ᶻ suc i)) {2^n≢0 (suc i)} > zero = x + x >> suc n = (x div (1ℤ << suc n)) {1<> 1) + + uint : ∀ {n} → Bits n → ℤ + uint x = sumᶻ λ i → if hasBit i x then 1ℤ << toℕ i else 0ℤ + + sint : ∀ {n} → Bits n → ℤ + sint {zero} x = 0ℤ + sint {suc n} x = uint x -ᶻ (if hasBit (fromℕ n) x then 1ℤ << suc n else 0ℤ) -- cgit v1.2.3