------------------------------------------------------------------------ -- Agda Helium -- -- Algebraic properties of ordered abelian groups ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} open import Helium.Algebra.Ordered.StrictTotal.Bundles module Helium.Algebra.Ordered.StrictTotal.Properties.AbelianGroup {ℓ₁ ℓ₂ ℓ₃} (abelianGroup : AbelianGroup ℓ₁ ℓ₂ ℓ₃) where open AbelianGroup abelianGroup open import Relation.Binary.Core open import Relation.Binary.Reasoning.StrictPartialOrder strictPartialOrder open import Algebra.Properties.AbelianGroup Unordered.abelianGroup public open import Algebra.Properties.CommutativeMonoid.Mult.TCOptimised Unordered.commutativeMonoid public open import Helium.Algebra.Ordered.StrictTotal.Properties.Group group public using (<⇒≱; ≤⇒≯; >⇒≉; ≈⇒≯; <⇒≉; ≈⇒≮; ≤∧≉⇒<; ≥∧≉⇒>; x_ ⁻¹-anti-mono {x} {y} x