------------------------------------------------------------------------ -- Agda Helium -- -- Algebraic properties of ordered commutative rings ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} open import Helium.Algebra.Ordered.StrictTotal.Bundles module Helium.Algebra.Ordered.StrictTotal.Properties.CommutativeRing {ℓ₁ ℓ₂ ℓ₃} (commutativeRing : CommutativeRing ℓ₁ ℓ₂ ℓ₃) where open CommutativeRing commutativeRing open import Algebra.Properties.Ring Unordered.ring public renaming (-0#≈0# to -0≈0) open import Algebra.Properties.Semiring.Mult.TCOptimised Unordered.semiring public open import Algebra.Properties.CommutativeSemiring.Exp.TCOptimised Unordered.commutativeSemiring public open import Helium.Algebra.Ordered.StrictTotal.Properties.Ring ring public using ( <⇒≱; ≤⇒≯; >⇒≉; ≈⇒≯; <⇒≉; ≈⇒≮; ≤∧≉⇒<; ≥∧≉⇒> ; x