------------------------------------------------------------------------ -- Agda Helium -- -- Definition of the Armv8-M pseudocode. ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module Helium.Data.Pseudocode.Core where open import Data.Bool using (Bool; true; false) open import Data.Fin using (Fin; #_) open import Data.Nat as ℕ using (ℕ; zero; suc) open import Data.Nat.Properties using (+-comm) open import Data.Product using (∃; _,_; proj₂; uncurry) open import Data.Sum using ([_,_]′; inj₁; inj₂) open import Data.Vec using (Vec; []; _∷_; lookup; map) open import Data.Vec.Relation.Unary.All using (All; []; _∷_; reduce) open import Data.Vec.Relation.Unary.Any using (Any; here; there) open import Function as F using (_∘_; _∘′_; _∋_) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Relation.Nullary using (Dec; yes; no) open import Relation.Nullary.Decidable.Core using (True; False; toWitness; fromWitness; map′) open import Relation.Nullary.Product using (_×-dec_) open import Relation.Nullary.Sum using (_⊎-dec_) open import Relation.Unary using (Decidable) --- The set of types and boolean properties of them data Type : Set where bool : Type int : Type fin : (n : ℕ) → Type real : Type bit : Type bits : (n : ℕ) → Type tuple : ∀ n → Vec Type n → Type array : Type → (n : ℕ) → Type data HasEquality : Type → Set where bool : HasEquality bool int : HasEquality int fin : ∀ {n} → HasEquality (fin n) real : HasEquality real bit : HasEquality bit bits : ∀ {n} → HasEquality (bits n) hasEquality? : Decidable HasEquality hasEquality? bool = yes bool hasEquality? int = yes int hasEquality? (fin n) = yes fin hasEquality? real = yes real hasEquality? bit = yes bit hasEquality? (bits n) = yes bits hasEquality? (tuple n x) = no (λ ()) hasEquality? (array t n) = no (λ ()) data IsNumeric : Type → Set where int : IsNumeric int real : IsNumeric real isNumeric? : Decidable IsNumeric isNumeric? bool = no (λ ()) isNumeric? int = yes int isNumeric? (fin n) = no (λ ()) isNumeric? real = yes real isNumeric? bit = no (λ ()) isNumeric? (bits n) = no (λ ()) isNumeric? (tuple n x) = no (λ ()) isNumeric? (array t n) = no (λ ()) combineNumeric : ∀ t₁ t₂ → {isNumeric₁ : True (isNumeric? t₁)} → {isNumeric₂ : True (isNumeric? t₂)} → Type combineNumeric int int = int combineNumeric int real = real combineNumeric real _ = real data Sliced : Set where bits : Sliced array : Type → Sliced asType : Sliced → ℕ → Type asType bits n = bits n asType (array t) n = array t n sliced? : ∀ t → Dec (∃ λ t′ → ∃ λ n → asType t′ n ≡ t) sliced? bool = no (λ { (bits , ()) ; (array _ , ()) }) sliced? int = no (λ { (bits , ()) ; (array _ , ()) }) sliced? (fin n) = no (λ { (bits , ()) ; (array _ , ()) }) sliced? real = no (λ { (bits , ()) ; (array _ , ()) }) sliced? bit = no (λ { (bits , ()) ; (array _ , ()) }) sliced? (bits n) = yes (bits , n , refl) sliced? (tuple n x) = no (λ { (bits , ()) ; (array _ , ()) }) sliced? (array t n) = yes (array t , n , refl) elemType : Sliced → Type elemType bits = bit elemType (array t) = t --- Literals data Literal : Type → Set where _′b : Bool → Literal bool _′i : ℕ → Literal int _′f : ∀ {n} → Fin n → Literal (fin n) _′r : ℕ → Literal real _′x : Bool → Literal bit _′xs : ∀ {n} → Vec Bool n → Literal (bits n) _′a : ∀ {n t} → Literal t → Literal (array t n) --- Expressions, references, statements, functions and procedures module Code {o} (Σ : Vec Type o) where data Expression {n} (Γ : Vec Type n) : Type → Set data CanAssign {n Γ} : ∀ {t} → Expression {n} Γ t → Set canAssign? : ∀ {n Γ t} → Decidable (CanAssign {n} {Γ} {t}) canAssignAll? : ∀ {n Γ m ts} → Decidable {A = All (Expression {n} Γ) {m} ts} (All (CanAssign ∘ proj₂) ∘ (reduce (λ {x} e → x , e))) data AssignsState {n Γ} : ∀ {t e} → CanAssign {n} {Γ} {t} e → Set assignsState? : ∀ {n Γ t e} → Decidable (AssignsState {n} {Γ} {t} {e}) assignsStateAny? : ∀ {n Γ m ts es} → Decidable {A = All (CanAssign ∘ proj₂) (reduce {P = Expression {n} Γ} (λ {x} e → x , e) {m} {ts} es)} (Any (AssignsState ∘ proj₂) ∘ reduce (λ {x} a → x , a)) data Statement {n} (Γ : Vec Type n) : Set data ChangesState {n Γ} : Statement {n} Γ → Set changesState? : ∀ {n Γ} → Decidable (ChangesState {n} {Γ}) data Function {n} (Γ : Vec Type n) (ret : Type) : Set data Procedure {n} (Γ : Vec Type n) : Set infix 8 -_ infixr 7 _^_ infixl 6 _*_ _and_ _>>_ -- infixl 6 _/_ infixl 5 _+_ _or_ _&&_ _||_ _∶_ infix 4 _≟_ _>_ : Expression Γ int → ℕ → Expression Γ int rnd : Expression Γ real → Expression Γ int fin : ∀ {k ms n} → (All (Fin) ms → Fin n) → Expression Γ (tuple k (map fin ms)) → Expression Γ (fin n) asInt : ∀ {m} → Expression Γ (fin m) → Expression Γ int tup : ∀ {m ts} → All (Expression Γ) ts → Expression Γ (tuple m ts) head : ∀ {m t ts} → Expression Γ (tuple (suc m) (t ∷ ts)) → Expression Γ t tail : ∀ {m t ts} → Expression Γ (tuple (suc m) (t ∷ ts)) → Expression Γ (tuple m ts) call : ∀ {t m Δ} → Function Δ t → All (Expression Γ) {m} Δ → Expression Γ t if_then_else_ : ∀ {t} → Expression Γ bool → Expression Γ t → Expression Γ t → Expression Γ t data CanAssign {n} {Γ} where state : ∀ i → CanAssign (state i) var : ∀ i → CanAssign (var i) abort : ∀ {t} {e : Expression Γ (fin 0)} → CanAssign (abort {t = t} e) _∶_ : ∀ {m n t} {e₁ : Expression Γ (asType t m)} {e₂ : Expression Γ (asType t n)} → CanAssign e₁ → CanAssign e₂ → CanAssign (e₁ ∶ e₂) [_] : ∀ {t} {e : Expression Γ (elemType t)} → CanAssign e → CanAssign ([_] {t = t} e) unbox : ∀ {t} {e : Expression Γ (asType t 1)} → CanAssign e → CanAssign (unbox e) slice : ∀ {i j t} {e₁ : Expression Γ (asType t (i ℕ.+ j))} → CanAssign e₁ → (e₂ : Expression Γ (fin (suc i))) → CanAssign (slice e₁ e₂) cast : ∀ {i j t} {e : Expression Γ (asType t i)} .(eq : i ≡ j) → CanAssign e → CanAssign (cast eq e) tup : ∀ {m ts} {es : All (Expression Γ) {m} ts} → All (CanAssign ∘ proj₂) (reduce (λ {x} e → x , e) es) → CanAssign (tup es) canAssign? (lit x) = no λ () canAssign? (state i) = yes (state i) canAssign? (var i) = yes (var i) canAssign? (abort e) = yes abort canAssign? (e ≟ e₁) = no λ () canAssign? (e > e₁) = no λ () canAssign? (rnd e) = no λ () canAssign? (fin x e) = no λ () canAssign? (asInt e) = no λ () canAssign? (tup es) = map′ tup (λ { (tup es) → es }) (canAssignAll? es) canAssign? (head e) = no λ () canAssign? (tail e) = no λ () canAssign? (call x e) = no λ () canAssign? (if e then e₁ else e₂) = no λ () canAssignAll? [] = yes [] canAssignAll? (e ∷ es) = map′ (uncurry _∷_) (λ { (e ∷ es) → e , es }) (canAssign? e ×-dec canAssignAll? es) data AssignsState where state : ∀ i → AssignsState (state i) _∶ˡ_ : ∀ {m n t e₁ e₂ a₁} → AssignsState a₁ → ∀ a₂ → AssignsState (_∶_ {m = m} {n} {t} {e₁} {e₂} a₁ a₂) _∶ʳ_ : ∀ {m n t e₁ e₂} a₁ {a₂} → AssignsState a₂ → AssignsState (_∶_ {m = m} {n} {t} {e₁} {e₂} a₁ a₂) [_] : ∀ {t e a} → AssignsState a → AssignsState ([_] {t = t} {e} a) unbox : ∀ {t e a} → AssignsState a → AssignsState (unbox {t = t} {e} a) slice : ∀ {i j t e₁ a} → AssignsState a → ∀ e₂ → AssignsState (slice {i = i} {j} {t} {e₁} a e₂) cast : ∀ {i j t e} .(eq : i ≡ j) {a} → AssignsState a → AssignsState (cast {t = t} {e} eq a) tup : ∀ {m ts es as} → Any (AssignsState ∘ proj₂) (reduce (λ {x} a → x , a) as) → AssignsState (tup {m = m} {ts} {es} as) assignsState? (state i) = yes (state i) assignsState? (var i) = no λ () assignsState? abort = no λ () assignsState? (a ∶ a₁) = map′ [ (_∶ˡ a₁) , (a ∶ʳ_) ]′ (λ { (s ∶ˡ _) → inj₁ s ; (_ ∶ʳ s) → inj₂ s }) (assignsState? a ⊎-dec assignsState? a₁) assignsState? [ a ] = map′ [_] (λ { [ s ] → s }) (assignsState? a) assignsState? (unbox a) = map′ unbox (λ { (unbox s) → s }) (assignsState? a) assignsState? (slice a e₂) = map′ (λ s → slice s e₂ ) (λ { (slice s _) → s }) (assignsState? a) assignsState? (cast eq a) = map′ (cast eq) (λ { (cast _ s) → s }) (assignsState? a) assignsState? (tup as) = map′ tup (λ { (tup ss) → ss }) (assignsStateAny? as) assignsStateAny? {es = []} [] = no λ () assignsStateAny? {es = e ∷ es} (a ∷ as) = map′ [ here , there ]′ (λ { (here s) → inj₁ s ; (there ss) → inj₂ ss }) (assignsState? a ⊎-dec assignsStateAny? as) infix 4 _≔_ infixl 2 if_then_else_ infixl 1 _∙_ _∙return_ infix 1 _∙end data Statement Γ where _∙_ : Statement Γ → Statement Γ → Statement Γ skip : Statement Γ _≔_ : ∀ {t} → (ref : Expression Γ t) → {canAssign : True (canAssign? ref)} → Expression Γ t → Statement Γ declare : ∀ {t} → Expression Γ t → Statement (t ∷ Γ) → Statement Γ invoke : ∀ {m Δ} → Procedure Δ → All (Expression Γ) {m} Δ → Statement Γ if_then_else_ : Expression Γ bool → Statement Γ → Statement Γ → Statement Γ for : ∀ m → Statement (fin m ∷ Γ) → Statement Γ data ChangesState where _∙ˡ_ : ∀ {s₁} → ChangesState s₁ → ∀ s₂ → ChangesState (s₁ ∙ s₂) _∙ʳ_ : ∀ s₁ {s₂} → ChangesState s₂ → ChangesState (s₁ ∙ s₂) _≔_ : ∀ {t ref} canAssign {assignsState : True (assignsState? (toWitness canAssign))} e₂ → ChangesState (_≔_ {t = t} ref {canAssign} e₂) declare : ∀ {t} e {s} → ChangesState s → ChangesState (declare {t = t} e s) invoke : ∀ {m Δ} p e → ChangesState (invoke {m = m} {Δ} p e) if_then′_else_ : ∀ e {s₁} → ChangesState s₁ → ∀ s₂ → ChangesState (if e then s₁ else s₂) if_then_else′_ : ∀ e s₁ {s₂} → ChangesState s₂ → ChangesState (if e then s₁ else s₂) for : ∀ m {s} → ChangesState s → ChangesState (for m s) changesState? (s₁ ∙ s₂) = map′ [ _∙ˡ s₂ , s₁ ∙ʳ_ ]′ (λ { (s ∙ˡ _) → inj₁ s ; (_ ∙ʳ s) → inj₂ s }) (changesState? s₁ ⊎-dec changesState? s₂) changesState? skip = no λ () changesState? (_≔_ ref {a} e) = map′ (λ s → _≔_ a {fromWitness s} e) (λ { (_≔_ _ {s} _) → toWitness s }) (assignsState? (toWitness a)) changesState? (declare e s) = map′ (declare e) (λ { (declare e s) → s }) (changesState? s) changesState? (invoke p e) = yes (invoke p e) changesState? (if e then s₁ else s₂) = map′ [ if e then′_else s₂ , if e then s₁ else′_ ]′ (λ { (if _ then′ s else _) → inj₁ s ; (if _ then _ else′ s) → inj₂ s }) (changesState? s₁ ⊎-dec changesState? s₂) changesState? (for m s) = map′ (for m) (λ { (for m s) → s }) (changesState? s) data Function Γ ret where _∙return_ : (s : Statement Γ) → {False (changesState? s)} → Expression Γ ret → Function Γ ret declare : ∀ {t} → Expression Γ t → Function (t ∷ Γ) ret → Function Γ ret data Procedure Γ where _∙end : Statement Γ → Procedure Γ infixl 6 _<<_ infixl 5 _-_ slice′ : ∀ {n Γ i j t} → Expression {n} Γ (asType t (i ℕ.+ j)) → Expression Γ (fin (suc j)) → Expression Γ (asType t i) slice′ {i = i} e₁ e₂ = slice (cast (+-comm i _) e₁) e₂ _-_ : ∀ {n Γ t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression {n} Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ {isNumeric₁} {isNumeric₂}) _-_ {isNumeric₂ = isNumeric₂} x y = x + (-_ {isNumeric = isNumeric₂} y) _<<_ : ∀ {n Γ} → Expression {n} Γ int → ℕ → Expression Γ int x << n = rnd (x * lit (2 ′r) ^ n) get : ∀ {n Γ} → ℕ → Expression {n} Γ int → Expression Γ bit get i x = if x - x >> suc i << suc i