------------------------------------------------------------------------ -- Agda Helium -- -- Definition of the Armv8-M pseudocode. ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module Helium.Data.Pseudocode.Core where open import Data.Bool using (Bool; true; false) open import Data.Fin as Fin using (Fin) open import Data.Fin.Patterns open import Data.Nat as ℕ using (ℕ; zero; suc) open import Data.Nat.Properties using (+-comm) open import Data.Product using (∃; _,_; proj₂; uncurry) open import Data.Sum using ([_,_]′; inj₁; inj₂) open import Data.Vec using (Vec; []; _∷_; lookup; map) open import Data.Vec.Relation.Unary.All using (All; []; _∷_; reduce) open import Data.Vec.Relation.Unary.Any using (Any; here; there) open import Function as F using (_∘_; _∘′_; _∋_) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Relation.Nullary using (Dec; yes; no) open import Relation.Nullary.Decidable.Core using (True; False; toWitness; fromWitness; map′) open import Relation.Nullary.Product using (_×-dec_) open import Relation.Nullary.Sum using (_⊎-dec_) open import Relation.Unary using (Decidable) --- The set of types and boolean properties of them data Type : Set where bool : Type int : Type fin : (n : ℕ) → Type real : Type bit : Type bits : (n : ℕ) → Type tuple : ∀ n → Vec Type n → Type array : Type → (n : ℕ) → Type data HasEquality : Type → Set where bool : HasEquality bool int : HasEquality int fin : ∀ {n} → HasEquality (fin n) real : HasEquality real bit : HasEquality bit bits : ∀ n → HasEquality (bits n) hasEquality? : Decidable HasEquality hasEquality? bool = yes bool hasEquality? int = yes int hasEquality? (fin n) = yes fin hasEquality? real = yes real hasEquality? bit = yes bit hasEquality? (bits n) = yes (bits n) hasEquality? (tuple n x) = no (λ ()) hasEquality? (array t n) = no (λ ()) data IsNumeric : Type → Set where int : IsNumeric int real : IsNumeric real isNumeric? : Decidable IsNumeric isNumeric? bool = no (λ ()) isNumeric? int = yes int isNumeric? (fin n) = no (λ ()) isNumeric? real = yes real isNumeric? bit = no (λ ()) isNumeric? (bits n) = no (λ ()) isNumeric? (tuple n x) = no (λ ()) isNumeric? (array t n) = no (λ ()) combineNumeric : ∀ t₁ t₂ → (isNumeric₁ : True (isNumeric? t₁)) → (isNumeric₂ : True (isNumeric? t₂)) → Type combineNumeric int int _ _ = int combineNumeric int real _ _ = real combineNumeric real _ _ _ = real data Sliced : Set where bits : Sliced array : Type → Sliced asType : Sliced → ℕ → Type asType bits n = bits n asType (array t) n = array t n sliced? : ∀ t → Dec (∃ λ t′ → ∃ λ n → asType t′ n ≡ t) sliced? bool = no (λ { (bits , ()) ; (array _ , ()) }) sliced? int = no (λ { (bits , ()) ; (array _ , ()) }) sliced? (fin n) = no (λ { (bits , ()) ; (array _ , ()) }) sliced? real = no (λ { (bits , ()) ; (array _ , ()) }) sliced? bit = no (λ { (bits , ()) ; (array _ , ()) }) sliced? (bits n) = yes (bits , n , refl) sliced? (tuple n x) = no (λ { (bits , ()) ; (array _ , ()) }) sliced? (array t n) = yes (array t , n , refl) elemType : Sliced → Type elemType bits = bit elemType (array t) = t --- Literals data Literal : Type → Set where _′b : Bool → Literal bool _′i : ℕ → Literal int _′f : ∀ {n} → Fin n → Literal (fin n) _′r : ℕ → Literal real _′x : Bool → Literal bit _′xs : ∀ {n} → Vec Bool n → Literal (bits n) _′a : ∀ {n t} → Literal t → Literal (array t n) --- Expressions, references, statements, functions and procedures module Code {o} (Σ : Vec Type o) where data Expression {n} (Γ : Vec Type n) : Type → Set data CanAssign {n Γ} : ∀ {t} → Expression {n} Γ t → Set canAssign? : ∀ {n Γ t} → Decidable (CanAssign {n} {Γ} {t}) data ReferencesState {n Γ} : ∀ {t} → Expression {n} Γ t → Set referencesState? : ∀ {n Γ t} → Decidable (ReferencesState {n} {Γ} {t}) data Statement {n} (Γ : Vec Type n) : Set data ChangesState {n Γ} : Statement {n} Γ → Set changesState? : ∀ {n Γ} → Decidable (ChangesState {n} {Γ}) data Function {n} (Γ : Vec Type n) (ret : Type) : Set data Procedure {n} (Γ : Vec Type n) : Set infix 8 -_ infixr 7 _^_ infixl 6 _*_ _and_ _>>_ -- infixl 6 _/_ infixl 5 _+_ _or_ _&&_ _||_ infix 4 _≟_ _>_ : Expression Γ int → ℕ → Expression Γ int rnd : Expression Γ real → Expression Γ int fin : ∀ {k ms n} → (All (Fin) ms → Fin n) → Expression Γ (tuple k (map fin ms)) → Expression Γ (fin n) asInt : ∀ {m} → Expression Γ (fin m) → Expression Γ int nil : Expression Γ (tuple 0 []) cons : ∀ {m t ts} → Expression Γ t → Expression Γ (tuple m ts) → Expression Γ (tuple (suc m) (t ∷ ts)) head : ∀ {m t ts} → Expression Γ (tuple (suc m) (t ∷ ts)) → Expression Γ t tail : ∀ {m t ts} → Expression Γ (tuple (suc m) (t ∷ ts)) → Expression Γ (tuple m ts) call : ∀ {t m Δ} → Function Δ t → All (Expression Γ) {m} Δ → Expression Γ t if_then_else_ : ∀ {t} → Expression Γ bool → Expression Γ t → Expression Γ t → Expression Γ t data CanAssign {n} {Γ} where state : ∀ i → CanAssign (state i) var : ∀ i → CanAssign (var i) abort : ∀ {t} e → CanAssign (abort {t = t} e) [_] : ∀ {t e} → CanAssign e → CanAssign ([_] {t = t} e) unbox : ∀ {t e} → CanAssign e → CanAssign (unbox {t = t} e) splice : ∀ {m n t e₁ e₂} → CanAssign e₁ → CanAssign e₂ → ∀ e₃ → CanAssign (splice {m = m} {n} {t} e₁ e₂ e₃) cut : ∀ {m n t e₁} → CanAssign e₁ → ∀ e₂ → CanAssign (cut {m = m} {n} {t} e₁ e₂) cast : ∀ {i j t e} .(eq : i ≡ j) → CanAssign e → CanAssign (cast {t = t} eq e) nil : CanAssign nil cons : ∀ {m t ts e₁ e₂} → CanAssign e₁ → CanAssign e₂ → CanAssign (cons {m = m} {t} {ts} e₁ e₂) head : ∀ {m t ts e} → CanAssign e → CanAssign (head {m = m} {t} {ts} e) tail : ∀ {m t ts e} → CanAssign e → CanAssign (tail {m = m} {t} {ts} e) canAssign? (lit x) = no λ () canAssign? (state i) = yes (state i) canAssign? (var i) = yes (var i) canAssign? (abort e) = yes (abort e) canAssign? (e ≟ e₁) = no λ () canAssign? (e > e₁) = no λ () canAssign? (rnd e) = no λ () canAssign? (fin x e) = no λ () canAssign? (asInt e) = no λ () canAssign? nil = yes nil canAssign? (cons e e₁) = map′ (uncurry cons) (λ { (cons e e₁) → e , e₁ }) (canAssign? e ×-dec canAssign? e₁) canAssign? (head e) = map′ head (λ { (head e) → e }) (canAssign? e) canAssign? (tail e) = map′ tail (λ { (tail e) → e }) (canAssign? e) canAssign? (call x e) = no λ () canAssign? (if e then e₁ else e₂) = no λ () data ReferencesState where state : ∀ i → ReferencesState (state i) [_] : ∀ {t e} → ReferencesState e → ReferencesState ([_] {t = t} e) unbox : ∀ {t e} → ReferencesState e → ReferencesState (unbox {t = t} e) spliceˡ : ∀ {m n t e} → ReferencesState e → ∀ e₁ e₂ → ReferencesState (splice {m = m} {n} {t} e e₁ e₂) spliceʳ : ∀ {m n t} e {e₁} → ReferencesState e₁ → ∀ e₂ → ReferencesState (splice {m = m} {n} {t} e e₁ e₂) cut : ∀ {m n t e} → ReferencesState e → ∀ e₁ → ReferencesState (cut {m = m} {n} {t} e e₁) cast : ∀ {i j t} .(eq : i ≡ j) {e} → ReferencesState e → ReferencesState (cast {t = t} eq e) consˡ : ∀ {m t ts e} → ReferencesState e → ∀ e₁ → ReferencesState (cons {m = m} {t} {ts} e e₁) consʳ : ∀ {m t ts} e {e₁} → ReferencesState e₁ → ReferencesState (cons {m = m} {t} {ts} e e₁) head : ∀ {m t ts e} → ReferencesState e → ReferencesState (head {m = m} {t} {ts} e) tail : ∀ {m t ts e} → ReferencesState e → ReferencesState (tail {m = m} {t} {ts} e) referencesState? (lit x) = no λ () referencesState? (state i) = yes (state i) referencesState? (var i) = no λ () referencesState? (abort e) = no λ () referencesState? (e ≟ e₁) = no λ () referencesState? (e > x) = no λ () referencesState? (rnd e) = no λ () referencesState? (fin x e) = no λ () referencesState? (asInt e) = no λ () referencesState? nil = no λ () referencesState? (cons e e₁) = map′ [ (λ e → consˡ e e₁) , (λ e₁ → consʳ e e₁) ]′ (λ { (consˡ e e₁) → inj₁ e ; (consʳ e e₁) → inj₂ e₁ }) (referencesState? e ⊎-dec referencesState? e₁) referencesState? (head e) = map′ head (λ { (head e) → e }) (referencesState? e) referencesState? (tail e) = map′ tail (λ { (tail e) → e }) (referencesState? e) referencesState? (call f es) = no λ () referencesState? (if e then e₁ else e₂) = no λ () infix 4 _≔_ infixl 2 if_then_else_ if_then_ infixl 1 _∙_ _∙return_ infix 1 _∙end data Statement Γ where _∙_ : Statement Γ → Statement Γ → Statement Γ skip : Statement Γ _≔_ : ∀ {t} → (ref : Expression Γ t) → {canAssign : True (canAssign? ref)} → Expression Γ t → Statement Γ declare : ∀ {t} → Expression Γ t → Statement (t ∷ Γ) → Statement Γ invoke : ∀ {m Δ} → Procedure Δ → All (Expression Γ) {m} Δ → Statement Γ if_then_ : Expression Γ bool → Statement Γ → Statement Γ if_then_else_ : Expression Γ bool → Statement Γ → Statement Γ → Statement Γ for : ∀ m → Statement (fin m ∷ Γ) → Statement Γ data ChangesState where _∙ˡ_ : ∀ {s} → ChangesState s → ∀ s₁ → ChangesState (s ∙ s₁) _∙ʳ_ : ∀ s {s₁} → ChangesState s₁ → ChangesState (s ∙ s₁) _≔_ : ∀ {t} ref {canAssign : True (canAssign? ref)} {refsState : True (referencesState? ref)} e₂ → ChangesState (_≔_ {t = t} ref {canAssign} e₂) declare : ∀ {t} e {s} → ChangesState s → ChangesState (declare {t = t} e s) invoke : ∀ {m Δ} p es → ChangesState (invoke {m = m} {Δ} p es) if_then_ : ∀ e {s} → ChangesState s → ChangesState (if e then s) if_then′_else_ : ∀ e {s} → ChangesState s → ∀ s₁ → ChangesState (if e then s else s₁) if_then_else′_ : ∀ e s {s₁} → ChangesState s₁ → ChangesState (if e then s else s₁) for : ∀ m {s} → ChangesState s → ChangesState (for m s) changesState? (s ∙ s₁) = map′ [ _∙ˡ s₁ , s ∙ʳ_ ]′ (λ { (s ∙ˡ s₁) → inj₁ s ; (s ∙ʳ s₁) → inj₂ s₁ }) (changesState? s ⊎-dec changesState? s₁) changesState? skip = no λ () changesState? (_≔_ ref e) = map′ (λ refsState → _≔_ ref {refsState = fromWitness refsState} e) (λ { (_≔_ ref {refsState = refsState} e) → toWitness refsState }) (referencesState? ref) changesState? (declare e s) = map′ (declare e) (λ { (declare e s) → s }) (changesState? s) changesState? (invoke p e) = yes (invoke p e) changesState? (if e then s) = map′ (if e then_) (λ { (if e then s) → s }) (changesState? s) changesState? (if e then s else s₁) = map′ [ if e then′_else s₁ , if e then s else′_ ]′ (λ { (if e then′ s else s₁) → inj₁ s ; (if e then s else′ s₁) → inj₂ s₁ }) (changesState? s ⊎-dec changesState? s₁) changesState? (for m s) = map′ (for m) (λ { (for m s) → s }) (changesState? s) data Function Γ ret where _∙return_ : (s : Statement Γ) → {False (changesState? s)} → Expression Γ ret → Function Γ ret declare : ∀ {t} → Expression Γ t → Function (t ∷ Γ) ret → Function Γ ret data Procedure Γ where _∙end : Statement Γ → Procedure Γ infixl 6 _<<_ infixl 5 _-_ _∶_ tup : ∀ {n Γ m ts} → All (Expression {n} Γ) ts → Expression Γ (tuple m ts) tup [] = nil tup (e ∷ es) = cons e (tup es) _∶_ : ∀ {n Γ i j t} → Expression {n} Γ (asType t j) → Expression Γ (asType t i) → Expression Γ (asType t (i ℕ.+ j)) e₁ ∶ e₂ = splice e₁ e₂ (lit (Fin.fromℕ _ ′f)) slice : ∀ {n Γ i j t} → Expression {n} Γ (asType t (i ℕ.+ j)) → Expression Γ (fin (suc i)) → Expression Γ (asType t j) slice e₁ e₂ = head (cut e₁ e₂) slice′ : ∀ {n Γ i j t} → Expression {n} Γ (asType t (i ℕ.+ j)) → Expression Γ (fin (suc j)) → Expression Γ (asType t i) slice′ {i = i} e₁ e₂ = slice (cast (+-comm i _) e₁) e₂ _-_ : ∀ {n Γ t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression {n} Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ isNumeric₁ isNumeric₂) _-_ {isNumeric₂ = isNumeric₂} x y = x + (-_ {isNumeric = isNumeric₂} y) _<<_ : ∀ {n Γ} → Expression {n} Γ int → ℕ → Expression Γ int x << n = rnd (x * lit (2 ′r) ^ n) get : ∀ {n Γ} → ℕ → Expression {n} Γ int → Expression Γ bit get i x = if x - x >> suc i << suc i