------------------------------------------------------------------------ -- Agda Helium -- -- Base definitions for the axiomatic semantics ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} open import Helium.Data.Pseudocode.Types using (RawPseudocode) module Helium.Semantics.Axiomatic.Core {b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃} (rawPseudocode : RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃) where private open module C = RawPseudocode rawPseudocode open import Data.Bool as Bool using (Bool) open import Data.Fin as Fin using (Fin; zero; suc) open import Data.Fin.Patterns open import Data.Nat as ℕ using (ℕ; suc) import Data.Nat.Induction as Natᵢ import Data.Nat.Properties as ℕₚ open import Data.Product as × using (_,_; uncurry) open import Data.Sum using (_⊎_) open import Data.Unit using (⊤) open import Data.Vec as Vec using (Vec; []; _∷_; _++_; lookup) open import Data.Vec.Relation.Unary.All as All using (All; []; _∷_) open import Function using (_on_) open import Helium.Data.Pseudocode.Core open import Helium.Data.Pseudocode.Properties import Induction.WellFounded as Wf open import Level using (_⊔_; Lift; lift) import Relation.Binary.Construct.On as On open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; cong₂) open import Relation.Nullary using (Dec; does; yes; no) open import Relation.Nullary.Decidable.Core using (True; toWitness; map′) open import Relation.Nullary.Product using (_×-dec_) open import Relation.Unary using (_⊆_) private variable t t′ : Type m n : ℕ Γ Δ Σ ts : Vec Type m sizeOf : Type → Sliced → ℕ sizeOf bool s = 0 sizeOf int s = 0 sizeOf (fin n) s = 0 sizeOf real s = 0 sizeOf bit s = 0 sizeOf (bits n) s = Bool.if does (s ≟ˢ bits) then n else 0 sizeOf (tuple _ []) s = 0 sizeOf (tuple _ (t ∷ ts)) s = sizeOf t s ℕ.+ sizeOf (tuple _ ts) s sizeOf (array t n) s = Bool.if does (s ≟ˢ array t) then n else sizeOf t s allocateSpace : Vec Type n → Sliced → ℕ allocateSpace [] s = 0 allocateSpace (t ∷ ts) s = sizeOf t s ℕ.+ allocateSpace ts s private getSliced : ∀ {t} → True (sliced? t) → Sliced getSliced t = ×.proj₁ (toWitness t) getCount : ∀ {t} → True (sliced? t) → ℕ getCount t = ×.proj₁ (×.proj₂ (toWitness t)) data ⟦_;_⟧ₜ (counts : Sliced → ℕ) : (τ : Type) → Set (b₁ ⊔ i₁ ⊔ r₁) where bool : Bool → ⟦ counts ; bool ⟧ₜ int : ℤ → ⟦ counts ; int ⟧ₜ fin : ∀ {n} → Fin n → ⟦ counts ; fin n ⟧ₜ real : ℝ → ⟦ counts ; real ⟧ₜ bit : Bit → ⟦ counts ; bit ⟧ₜ bits : ∀ {n} → Vec (⟦ counts ; bit ⟧ₜ ⊎ Fin (counts bits)) n → ⟦ counts ; bits n ⟧ₜ array : ∀ {t n} → Vec (⟦ counts ; t ⟧ₜ ⊎ Fin (counts (array t))) n → ⟦ counts ; array t n ⟧ₜ tuple : ∀ {n ts} → All ⟦ counts ;_⟧ₜ ts → ⟦ counts ; tuple n ts ⟧ₜ Stack : (counts : Sliced → ℕ) → Vec Type n → Set (b₁ ⊔ i₁ ⊔ r₁) Stack counts Γ = ⟦ counts ; tuple _ Γ ⟧ₜ Heap : (counts : Sliced → ℕ) → Set (b₁ ⊔ i₁ ⊔ r₁) Heap counts = ∀ t → Vec ⟦ counts ; elemType t ⟧ₜ (counts t) record State (Γ : Vec Type n) : Set (b₁ ⊔ i₁ ⊔ r₁) where private counts = allocateSpace Γ field stack : Stack counts Γ heap : Heap counts Transform : Vec Type m → Type → Set (b₁ ⊔ i₁ ⊔ r₁) Transform ts t = ∀ counts → Heap counts → ⟦ counts ; tuple _ ts ⟧ₜ → ⟦ counts ; t ⟧ₜ Predicate : Vec Type m → Set (b₁ ⊔ i₁ ⊔ r₁) Predicate ts = ∀ counts → ⟦ counts ; tuple _ ts ⟧ₜ → Bool -- -- ⟦_⟧ₐ : ∀ {m Δ} → Assertion Σ Γ {m} Δ → State (Σ ++ Γ ++ Δ) → Set (b₁ ⊔ i₁ ⊔ r₁) -- -- ⟦_⟧ₐ = {!!} -- -- module _ {o} {Σ : Vec Type o} where -- -- open Code Σ -- -- 𝒦 : ∀ {n Γ m Δ t} → Literal t → Term Σ {n} Γ {m} Δ t -- -- 𝒦 = {!!} -- -- ℰ : ∀ {n Γ m Δ t} → Expression {n} Γ t → Term Σ Γ {m} Δ t -- -- ℰ = {!!} -- -- data HoareTriple {n Γ m Δ} : Assertion Σ {n} Γ {m} Δ → Statement Γ → Assertion Σ Γ Δ → Set (b₁ ⊔ i₁ ⊔ r₁) where -- -- _∙_ : ∀ {P Q R s₁ s₂} → HoareTriple P s₁ Q → HoareTriple Q s₂ R → HoareTriple P (s₁ ∙ s₂) R -- -- skip : ∀ {P} → HoareTriple P skip P -- -- assign : ∀ {P t ref canAssign e} → HoareTriple (asrtSubst P (toWitness canAssign) (ℰ e)) (_≔_ {t = t} ref {canAssign} e) P -- -- declare : ∀ {t P Q e s} → HoareTriple (P ∧ equal (var 0F) (termWknVar (ℰ e))) s (asrtWknVar Q) → HoareTriple (asrtElimVar P (ℰ e)) (declare {t = t} e s) Q -- -- invoke : ∀ {m ts P Q s e} → HoareTriple (assignMetas Δ ts (All.tabulate var) (asrtAddVars P)) s (asrtAddVars Q) → HoareTriple (assignMetas Δ ts (All.tabulate (λ i → ℰ (All.lookup i e))) (asrtAddVars P)) (invoke {m = m} {ts} (s ∙end) e) (asrtAddVars Q) -- -- if : ∀ {P Q e s₁ s₂} → HoareTriple (P ∧ equal (ℰ e) (𝒦 (Bool.true ′b))) s₁ Q → HoareTriple (P ∧ equal (ℰ e) (𝒦 (Bool.false ′b))) s₂ Q → HoareTriple P (if e then s₁ else s₂) Q -- -- for : ∀ {m} {I : Assertion Σ Γ (fin (suc m) ∷ Δ)} {s} → HoareTriple (some (asrtWknVar (asrtWknMetaAt 1F I) ∧ equal (meta 1F) (var 0F) ∧ equal (meta 0F) (func (λ { _ (lift x ∷ []) → lift (Fin.inject₁ x) }) (meta 1F ∷ [])))) s (some (asrtWknVar (asrtWknMetaAt 1F I) ∧ equal (meta 0F) (func (λ { _ (lift x ∷ []) → lift (Fin.suc x) }) (meta 1F ∷ [])))) → HoareTriple (some (I ∧ equal (meta 0F) (func (λ _ _ → lift 0F) []))) (for m s) (some (I ∧ equal (meta 0F) (func (λ _ _ → lift (Fin.fromℕ m)) []))) -- -- consequence : ∀ {P₁ P₂ Q₁ Q₂ s} → ⟦ P₁ ⟧ₐ ⊆ ⟦ P₂ ⟧ₐ → HoareTriple P₂ s Q₂ → ⟦ Q₂ ⟧ₐ ⊆ ⟦ Q₁ ⟧ₐ → HoareTriple P₁ s Q₁ -- -- some : ∀ {t P Q s} → HoareTriple P s Q → HoareTriple (some {t = t} P) s (some Q) -- -- frame : ∀ {P Q R s} → HoareTriple P s Q → HoareTriple (P * R) s (Q * R)