------------------------------------------------------------------------ -- Agda Helium -- -- Base definitions for the axiomatic semantics ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} open import Helium.Data.Pseudocode.Algebra using (RawPseudocode) module Helium.Semantics.Axiomatic.Core {b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃} (rawPseudocode : RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃) where private open module C = RawPseudocode rawPseudocode open import Data.Bool as Bool using (Bool) open import Data.Fin as Fin using (Fin; zero; suc) open import Data.Fin.Patterns open import Data.Nat as ℕ using (ℕ; suc) import Data.Nat.Induction as Natᵢ import Data.Nat.Properties as ℕₚ open import Data.Product as × using (_×_; _,_; uncurry) open import Data.Sum using (_⊎_) open import Data.Unit using (⊤) open import Data.Vec as Vec using (Vec; []; _∷_; _++_; lookup) open import Data.Vec.Relation.Unary.All as All using (All; []; _∷_) open import Function using (_on_) open import Helium.Data.Pseudocode.Core open import Helium.Data.Pseudocode.Properties import Induction.WellFounded as Wf open import Level using (_⊔_; Lift; lift) import Relation.Binary.Construct.On as On open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; cong₂) open import Relation.Nullary using (Dec; does; yes; no) open import Relation.Nullary.Decidable.Core using (True; toWitness; map′) open import Relation.Nullary.Product using (_×-dec_) open import Relation.Unary using (_⊆_) private variable t t′ : Type m n : ℕ Γ Δ Σ ts : Vec Type m ⟦_⟧ₜ : Type → Set (b₁ ⊔ i₁ ⊔ r₁) ⟦_⟧ₜ′ : Vec Type n → Set (b₁ ⊔ i₁ ⊔ r₁) ⟦ bool ⟧ₜ = Lift (b₁ ⊔ i₁ ⊔ r₁) Bool ⟦ int ⟧ₜ = Lift (b₁ ⊔ r₁) ℤ ⟦ fin n ⟧ₜ = Lift (b₁ ⊔ i₁ ⊔ r₁) (Fin n) ⟦ real ⟧ₜ = Lift (b₁ ⊔ i₁) ℝ ⟦ bit ⟧ₜ = Lift (i₁ ⊔ r₁) Bit ⟦ bits n ⟧ₜ = Vec ⟦ bit ⟧ₜ n ⟦ tuple n ts ⟧ₜ = ⟦ ts ⟧ₜ′ ⟦ array t n ⟧ₜ = Vec ⟦ t ⟧ₜ n ⟦ [] ⟧ₜ′ = Lift (b₁ ⊔ i₁ ⊔ r₁) ⊤ ⟦ t ∷ ts ⟧ₜ′ = ⟦ t ⟧ₜ × ⟦ ts ⟧ₜ′ fetch : ∀ i → ⟦ Γ ⟧ₜ′ → ⟦ lookup Γ i ⟧ₜ fetch {Γ = _ ∷ _} 0F (x , _) = x fetch {Γ = _ ∷ _} (suc i) (_ , xs) = fetch i xs Transform : Vec Type m → Type → Set (b₁ ⊔ i₁ ⊔ r₁) Transform ts t = ⟦ ts ⟧ₜ′ → ⟦ t ⟧ₜ Predicate : Vec Type m → Set (b₁ ⊔ i₁ ⊔ r₁) Predicate ts = ⟦ ts ⟧ₜ′ → Bool -- data HoareTriple {n Γ m Δ} : Assertion Σ {n} Γ {m} Δ → Statement Γ → Assertion Σ Γ Δ → Set (b₁ ⊔ i₁ ⊔ r₁) where -- _∙_ : ∀ {P Q R s₁ s₂} → HoareTriple P s₁ Q → HoareTriple Q s₂ R → HoareTriple P (s₁ ∙ s₂) R -- skip : ∀ {P} → HoareTriple P skip P -- assign : ∀ {P t ref canAssign e} → HoareTriple (asrtSubst P (toWitness canAssign) (ℰ e)) (_≔_ {t = t} ref {canAssign} e) P -- declare : ∀ {t P Q e s} → HoareTriple (P ∧ equal (var 0F) (termWknVar (ℰ e))) s (asrtWknVar Q) → HoareTriple (asrtElimVar P (ℰ e)) (declare {t = t} e s) Q -- invoke : ∀ {m ts P Q s e} → HoareTriple (assignMetas Δ ts (All.tabulate var) (asrtAddVars P)) s (asrtAddVars Q) → HoareTriple (assignMetas Δ ts (All.tabulate (λ i → ℰ (All.lookup i e))) (asrtAddVars P)) (invoke {m = m} {ts} (s ∙end) e) (asrtAddVars Q) -- if : ∀ {P Q e s₁ s₂} → HoareTriple (P ∧ equal (ℰ e) (𝒦 (Bool.true ′b))) s₁ Q → HoareTriple (P ∧ equal (ℰ e) (𝒦 (Bool.false ′b))) s₂ Q → HoareTriple P (if e then s₁ else s₂) Q -- for : ∀ {m} {I : Assertion Σ Γ (fin (suc m) ∷ Δ)} {s} → HoareTriple (some (asrtWknVar (asrtWknMetaAt 1F I) ∧ equal (meta 1F) (var 0F) ∧ equal (meta 0F) (func (λ { _ (lift x ∷ []) → lift (Fin.inject₁ x) }) (meta 1F ∷ [])))) s (some (asrtWknVar (asrtWknMetaAt 1F I) ∧ equal (meta 0F) (func (λ { _ (lift x ∷ []) → lift (Fin.suc x) }) (meta 1F ∷ [])))) → HoareTriple (some (I ∧ equal (meta 0F) (func (λ _ _ → lift 0F) []))) (for m s) (some (I ∧ equal (meta 0F) (func (λ _ _ → lift (Fin.fromℕ m)) []))) -- consequence : ∀ {P₁ P₂ Q₁ Q₂ s} → ⟦ P₁ ⟧ₐ ⊆ ⟦ P₂ ⟧ₐ → HoareTriple P₂ s Q₂ → ⟦ Q₂ ⟧ₐ ⊆ ⟦ Q₁ ⟧ₐ → HoareTriple P₁ s Q₁ -- some : ∀ {t P Q s} → HoareTriple P s Q → HoareTriple (some {t = t} P) s (some Q) -- frame : ∀ {P Q R s} → HoareTriple P s Q → HoareTriple (P * R) s (Q * R)