{-# OPTIONS --safe --without-K #-} open import Helium.Data.Pseudocode module Helium.Semantics.Denotational {b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃} (pseudocode : RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃) where open import Data.Fin as Fin hiding (cast; lift; _+_) import Data.Fin.Properties as Finₚ open import Data.Maybe using (just; nothing; _>>=_) open import Data.Nat hiding (_⊔_) import Data.Nat.Properties as ℕₚ open import Data.Product using (∃; _,_; dmap) open import Data.Sum using ([_,_]′) open import Data.Vec.Functional as V using (Vector) open import Function.Nary.NonDependent.Base open import Helium.Instructions import Helium.Semantics.Denotational.Core as Core open import Level hiding (lift; zero; suc) open import Relation.Binary using (Transitive) open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Relation.Nullary.Decidable open RawPseudocode pseudocode private ℓ : Level ℓ = b₁ record State : Set ℓ where field S : Vector (Bits 32) 32 R : Vector (Bits 32) 16 open Core State Beat : Set Beat = Fin 4 ElmtMask : Set b₁ ElmtMask = Bits 4 -- State properties &R : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ (Fin 16) → Reference n Γ (Bits 32) &R e = record { get = λ σ ρ → e σ ρ >>= λ (σ , i) → just (σ , State.R σ i) ; set = λ σ ρ x → e σ ρ >>= λ (σ , i) → just (record σ { R = V.updateAt i (λ _ → x) (State.R σ) } , ρ) } &S : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ (Fin 32) → Reference n Γ (Bits 32) &S e = record { get = λ σ ρ → e σ ρ >>= λ (σ , i) → just (σ , State.S σ i) ; set = λ σ ρ x → e σ ρ >>= λ (σ , i) → just (record σ { S = V.updateAt i (λ _ → x) (State.S σ) } , ρ) } &Q : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ VecReg → Expr n Γ Beat → Reference n Γ (Bits 32) &Q reg beat = &S (λ σ ρ → reg σ ρ >>= λ (σ , reg) → beat σ ρ >>= λ (σ , beat) → just (σ , combine reg beat)) -- Reference properties &cast : ∀ {k m n ls} {Γ : Sets n ls} → .(eq : k ≡ m) → Reference n Γ (Bits k) → Reference n Γ (Bits m) &cast eq &v = record { get = λ σ ρ → Reference.get &v σ ρ >>= λ (σ , v) → just (σ , cast eq v) ; set = λ σ ρ x → Reference.set &v σ ρ (cast (sym eq) x) } slice : ∀ {k m n ls} {Γ : Sets n ls} → Reference n Γ (Bits m) → Expr n Γ (∃ λ (i : Fin (suc m)) → ∃ λ j → toℕ (i - j) ≡ k) → Reference n Γ (Bits k) slice &v idx = record { get = λ σ ρ → Reference.get &v σ ρ >>= λ (σ , v) → idx σ ρ >>= λ (σ , i , j , i-j≡k) → just (σ , cast i-j≡k (sliceᵇ i j v)) ; set = λ σ ρ v → Reference.get &v σ ρ >>= λ (σ , v′) → idx σ ρ >>= λ (σ , i , j , i-j≡k) → Reference.set &v σ ρ (updateᵇ i j (cast (sym i-j≡k) v) v′) } elem : ∀ {k n ls} {Γ : Sets n ls} m → Reference n Γ (Bits (k * m)) → Expr n Γ (Fin k) → Reference n Γ (Bits m) elem m &v idx = slice &v λ σ ρ → idx σ ρ >>= λ (σ , i) → just (σ , helper _ _ i) where helper : ∀ m n → Fin m → ∃ λ (i : Fin (suc (m * n))) → ∃ λ j → toℕ (i - j) ≡ n helper (suc m) n zero = inject+ (m * n) (fromℕ n) , # 0 , eq where eq = trans (sym (Finₚ.toℕ-inject+ (m * n) (fromℕ n))) (Finₚ.toℕ-fromℕ n) helper (suc m) n (suc i) with x , y , x-y≡n ← helper m n i = u , v , trans (cast‿- (raise n x) (Fin.cast eq₂ (raise n y)) eq₁) (trans (raise‿- (suc (m * n)) n x y eq₂) x-y≡n) where eq₁ = ℕₚ.+-suc n (m * n) eq₂ = trans (ℕₚ.+-suc n (toℕ x)) (cong suc (sym (Finₚ.toℕ-raise n x))) eq₂′ = cong suc (sym (Finₚ.toℕ-cast eq₁ (raise n x))) u = Fin.cast eq₁ (raise n x) v = Fin.cast eq₂′ (Fin.cast eq₂ (raise n y)) raise‿- : ∀ m n (x : Fin m) y .(eq : n + suc (toℕ x) ≡ suc (toℕ (raise n x))) → toℕ (raise n x - Fin.cast eq (raise n y)) ≡ toℕ (x - y) raise‿- m ℕ.zero x zero _ = refl raise‿- (suc m) ℕ.zero (suc x) (suc y) p = raise‿- m ℕ.zero x y (ℕₚ.suc-injective p) raise‿- m (suc n) x y p = raise‿- m n x y (ℕₚ.suc-injective p) cast‿- : ∀ {m n} (x : Fin m) y .(eq : m ≡ n) → toℕ (Fin.cast eq x - Fin.cast (cong suc (sym (Finₚ.toℕ-cast eq x))) y) ≡ toℕ (x - y) cast‿- {suc m} {suc n} x zero eq = Finₚ.toℕ-cast eq x cast‿- {suc m} {suc n} (suc x) (suc y) eq = cast‿- x y (ℕₚ.suc-injective eq) -- Instruction semantics module _ (≈ᶻ-trans : Transitive _≈ᶻ_) (round∘⟦⟧ : ∀ x → x ≈ᶻ round ⟦ x ⟧) (round-cong : ∀ {x y} → x ≈ʳ y → round x ≈ᶻ round y) (0#-homo-round : round 0ℝ ≈ᶻ 0ℤ) (2^n≢0 : ∀ n → False (2ℤ ^ᶻ n ≟ᶻ 0ℤ)) (*ᶻ-identityʳ : ∀ x → x *ᶻ 1ℤ ≈ᶻ x) where open sliceᶻ ≈ᶻ-trans round∘⟦⟧ round-cong 0#-homo-round 2^n≢0 *ᶻ-identityʳ vadd : VAdd.VAdd → Procedure 2 (Beat , ElmtMask , _) vadd d = declare ⦇ zeros ⦈ (declare (! &Q ⦇ src₁ ⦈ (!# 1)) (label λ result op₁ beat elmtMask → [ (λ src₂ → for (toℕ elements) (lift ( elem (toℕ esize) (&cast (sym e*e≡32) (wknRef result)) (!# 0) ≔ ⦇ ! elem (toℕ esize) (&cast (sym e*e≡32) (wknRef op₁)) (!# 0) +ᵇ ! slice (&R ⦇ src₂ ⦈) ⦇ (esize , zero , refl) ⦈ ⦈)) ) , (λ src₂ → declare (! &Q ⦇ src₂ ⦈ (! beat)) (for (toℕ elements) (lift ( elem (toℕ esize) (&cast (sym e*e≡32) (wknRef (wknRef result))) (!# 0) ≔ ⦇ ! elem (toℕ esize) (&cast (sym e*e≡32) (wknRef (wknRef op₁))) (!# 0) +ᵇ ! elem (toℕ esize) (&cast (sym e*e≡32) (var (# 1))) (!# 0) ⦈)))) ]′ src₂ ∙ for 4 (lift ( if ⦇ (λ x y → does (getᵇ y x ≟ᵇ 1b)) (! wknRef elmtMask) (!# 0) ⦈ then elem 8 (&Q ⦇ dest ⦈ (! wknRef beat)) (!# 0) ≔ (! elem 8 (wknRef result) (!# 0)) else skip)))) where open VAdd.VAdd d esize = VAdd.esize d elements = VAdd.elements d e*e≡32 = VAdd.elem*esize≡32 d