------------------------------------------------------------------------ -- Agda Helium -- -- Denotational semantics of Armv8-M instructions. ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} open import Helium.Data.Pseudocode module Helium.Semantics.Denotational {b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃} (pseudocode : RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃) where open import Algebra.Core using (Op₂) open import Data.Bool as Bool using (Bool; true; false) open import Data.Fin as Fin hiding (cast; lift; _+_) import Data.Fin.Properties as Finₚ import Data.List as List open import Data.Nat hiding (_⊔_) import Data.Nat.Properties as ℕₚ open import Data.Product using (∃; _×_; _,_; dmap) open import Data.Sum using ([_,_]′) open import Data.Vec.Functional as V using (Vector; []; _∷_) open import Function using (_$_; _∘₂_) open import Function.Nary.NonDependent.Base import Helium.Instructions as Instr import Helium.Semantics.Denotational.Core as Core open import Level using (Level; _⊔_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong) open import Relation.Nullary using (does) open import Relation.Nullary.Decidable open RawPseudocode pseudocode private ℓ : Level ℓ = b₁ record State : Set ℓ where field S : Vector (Bits 32) 32 R : Vector (Bits 32) 16 P0 : Bits 16 mask : Bits 8 QC : Bit advanceVPT : Bool open Core State Beat : Set Beat = Fin 4 hilow : Beat → Fin 2 hilow zero = zero hilow (suc zero) = zero hilow (suc (suc _)) = suc zero oddeven : Beat → Fin 2 oddeven zero = zero oddeven (suc zero) = suc zero oddeven (suc (suc zero)) = zero oddeven (suc (suc (suc zero))) = suc zero ElmtMask : Set b₁ ElmtMask = Bits 4 -- State properties &R : ∀ {n ls} {Γ : Sets n ls} → PureExpr n Γ (Fin 16) → Reference n Γ (Bits 32) &R e = record { get = λ σ ρ → State.R σ (e σ ρ) ; set = λ x σ ρ → record σ { R = V.updateAt (e σ ρ) (λ _ → x) (State.R σ) } , ρ } &S : ∀ {n ls} {Γ : Sets n ls} → PureExpr n Γ (Fin 32) → Reference n Γ (Bits 32) &S e = record { get = λ σ ρ → State.S σ (e σ ρ) ; set = λ x σ ρ → record σ { S = V.updateAt (e σ ρ) (λ _ → x) (State.S σ) } , ρ } &Q : ∀ {n ls} {Γ : Sets n ls} → PureExpr n Γ Instr.VecReg → PureExpr n Γ Beat → Reference n Γ (Bits 32) &Q reg beat = &S λ σ ρ → combine (reg σ ρ) (beat σ ρ) &FPSCR-QC : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ Bit &FPSCR-QC = record { get = λ σ ρ → State.QC σ ; set = λ x σ ρ → record σ { QC = x } , ρ } &VPR-P0 : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ (Bits 16) &VPR-P0 = record { get = λ σ ρ → State.P0 σ ; set = λ x σ ρ → record σ { P0 = x } , ρ } &VPR-mask : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ (Bits 8) &VPR-mask = record { get = λ σ ρ → State.mask σ ; set = λ x σ ρ → record σ { mask = x } , ρ } &AdvanceVPT : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ Bool &AdvanceVPT = record { get = λ σ ρ → State.advanceVPT σ ; set = λ x σ ρ → record σ { advanceVPT = x } , ρ } -- Reference properties &cast : ∀ {k m n ls} {Γ : Sets n ls} → .(eq : k ≡ m) → Reference n Γ (Bits k) → Reference n Γ (Bits m) &cast eq &v = record { get = λ σ ρ → cast eq (Reference.get &v σ ρ) ; set = λ x σ ρ → Reference.set &v (cast (sym eq) x) σ ρ } slice : ∀ {k m n ls} {Γ : Sets n ls} → Reference n Γ (Bits m) → PureExpr n Γ (∃ λ (i : Fin (suc m)) → ∃ λ j → toℕ (i - j) ≡ k) → Reference n Γ (Bits k) slice &v idx = record { get = λ σ ρ → let (i , j , i-j≡k) = idx σ ρ in cast i-j≡k (sliceᵇ i j (Reference.get &v σ ρ)) ; set = λ v σ ρ → let (i , j , i-j≡k) = idx σ ρ in Reference.set &v (updateᵇ i j (cast (sym (i-j≡k)) v) (Reference.get &v σ ρ)) σ ρ } elem : ∀ {k n ls} {Γ : Sets n ls} m → Reference n Γ (Bits (k * m)) → PureExpr n Γ (Fin k) → Reference n Γ (Bits m) elem m &v idx = slice &v (λ σ ρ → helper _ _ (idx σ ρ)) where helper : ∀ m n → Fin m → ∃ λ (i : Fin (suc (m * n))) → ∃ λ j → toℕ (i - j) ≡ n helper (suc m) n zero = inject+ (m * n) (fromℕ n) , # 0 , eq where eq = trans (sym (Finₚ.toℕ-inject+ (m * n) (fromℕ n))) (Finₚ.toℕ-fromℕ n) helper (suc m) n (suc i) with x , y , x-y≡n ← helper m n i = u , v , trans (cast‿- (raise n x) (Fin.cast eq₂ (raise n y)) eq₁) (trans (raise‿- (suc (m * n)) n x y eq₂) x-y≡n) where eq₁ = ℕₚ.+-suc n (m * n) eq₂ = trans (ℕₚ.+-suc n (toℕ x)) (cong suc (sym (Finₚ.toℕ-raise n x))) eq₂′ = cong suc (sym (Finₚ.toℕ-cast eq₁ (raise n x))) u = Fin.cast eq₁ (raise n x) v = Fin.cast eq₂′ (Fin.cast eq₂ (raise n y)) raise‿- : ∀ m n (x : Fin m) y .(eq : n + suc (toℕ x) ≡ suc (toℕ (raise n x))) → toℕ (raise n x - Fin.cast eq (raise n y)) ≡ toℕ (x - y) raise‿- m ℕ.zero x zero _ = refl raise‿- (suc m) ℕ.zero (suc x) (suc y) p = raise‿- m ℕ.zero x y (ℕₚ.suc-injective p) raise‿- m (suc n) x y p = raise‿- m n x y (ℕₚ.suc-injective p) cast‿- : ∀ {m n} (x : Fin m) y .(eq : m ≡ n) → toℕ (Fin.cast eq x - Fin.cast (cong suc (sym (Finₚ.toℕ-cast eq x))) y) ≡ toℕ (x - y) cast‿- {suc m} {suc n} x zero eq = Finₚ.toℕ-cast eq x cast‿- {suc m} {suc n} (suc x) (suc y) eq = cast‿- x y (ℕₚ.suc-injective eq) -- General functions copyMasked : Instr.VecReg → Procedure 3 (Bits 32 , Beat , ElmtMask , _) copyMasked dest = for 4 ( -- 0:e 1:result 2:beat 3:elmtMask if ⦇ hasBit (↓ !# 0) (↓ !# 3) ⦈ then elem 8 (&Q (pure′ dest) (!# 2)) (!# 0) ≔ ↓! elem 8 (var (# 1)) (!# 0) else skip) ∙ ⦇ _ ⦈ module fun-sliceᶻ (1<> toℕ esize) (↓! elem (toℕ esize) (&cast (sym e*e≡32) (var (# 2))) (!# 0)) ([ (λ src₂ → ↓! slice (&R (pure′ src₂)) (pure′ (esize , zero , refl))) , (λ src₂ → ↓! elem (toℕ esize) (&cast (sym e*e≡32) (&Q (pure′ src₂) (!# 4))) (!# 0)) ]′ src₂) ⦈ ∙ if ↓ !# 1 then if ⦇ (λ m e → hasBit (combine e zero) (cast (sym e*e>>3≡4) m)) (↓ !# 5) (↓ !# 0) ⦈ then &FPSCR-QC ≔ ⦇ 1𝔹 ⦈ else skip else skip) ∙ invoke (copyMasked dest) ⦇ ↓ !# 2 , ⦇ ↓ !# 3 , ↓ !# 4 ⦈ ⦈ ∙ ⦇ _ ⦈ where open Instr.VQDMulH d rval = Bool.if rounding then 1ℤ << toℕ esize-1 else 0ℤ ⟦_⟧₁ : Instr.Instruction → Procedure 0 _ ⟦ Instr.vadd x ⟧₁ = execBeats (vadd x) ⟦ Instr.vsub x ⟧₁ = execBeats (vsub x) ⟦ Instr.vmul x ⟧₁ = execBeats (vmul x) ⟦ Instr.vmulh x ⟧₁ = execBeats (vmulh x) ⟦ Instr.vqdmulh x ⟧₁ = execBeats (vqdmulh x) open List using (List; []; _∷_) ⟦_⟧ : List (Instr.Instruction) → Procedure 0 _ ⟦ [] ⟧ = ⦇ _ ⦈ ⟦ i ∷ is ⟧ = invoke ⟦ i ⟧₁ ⦇ _ ⦈ ∙ ⟦ is ⟧