------------------------------------------------------------------------ -- Agda Helium -- -- Base definitions for the denotational semantics. ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} open import Helium.Data.Pseudocode.Types using (RawPseudocode) module Helium.Semantics.Denotational.Core {b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃} (rawPseudocode : RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃) where private open module C = RawPseudocode rawPseudocode open import Data.Bool as Bool using (Bool; true; false) open import Data.Fin as Fin using (Fin; zero; suc; #_) import Data.Fin.Properties as Finₚ open import Data.Nat as ℕ using (ℕ; zero; suc) import Data.Nat.Properties as ℕₚ open import Data.Product as P using (_×_; _,_) open import Data.Sum as S using (_⊎_) renaming (inj₁ to next; inj₂ to ret) open import Data.Unit using (⊤) open import Data.Vec as Vec using (Vec; []; _∷_) open import Data.Vec.Relation.Unary.All using (All; []; _∷_) import Data.Vec.Functional as VecF open import Function using (case_of_; _∘′_; id) open import Helium.Data.Pseudocode.Core import Induction as I import Induction.WellFounded as Wf open import Level hiding (zero; suc) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; module ≡-Reasoning) open import Relation.Nullary using (does) open import Relation.Nullary.Decidable.Core using (True; False; toWitness; fromWitness) ⟦_⟧ₗ : Type → Level ⟦ unit ⟧ₗ = 0ℓ ⟦ bool ⟧ₗ = 0ℓ ⟦ int ⟧ₗ = i₁ ⟦ fin n ⟧ₗ = 0ℓ ⟦ real ⟧ₗ = r₁ ⟦ bits n ⟧ₗ = b₁ ⟦ tuple n ts ⟧ₗ = helper ts where helper : ∀ {n} → Vec Type n → Level helper [] = 0ℓ helper (t ∷ ts) = ⟦ t ⟧ₗ ⊔ helper ts ⟦ array t n ⟧ₗ = ⟦ t ⟧ₗ ⟦_⟧ₜ : ∀ t → Set ⟦ t ⟧ₗ ⟦_⟧ₜ′ : ∀ {n} ts → Set ⟦ tuple n ts ⟧ₗ ⟦ unit ⟧ₜ = ⊤ ⟦ bool ⟧ₜ = Bool ⟦ int ⟧ₜ = ℤ ⟦ fin n ⟧ₜ = Fin n ⟦ real ⟧ₜ = ℝ ⟦ bits n ⟧ₜ = Bits n ⟦ tuple n ts ⟧ₜ = ⟦ ts ⟧ₜ′ ⟦ array t n ⟧ₜ = Vec ⟦ t ⟧ₜ n ⟦ [] ⟧ₜ′ = ⟦ unit ⟧ₜ ⟦ t ∷ [] ⟧ₜ′ = ⟦ t ⟧ₜ ⟦ t ∷ t′ ∷ ts ⟧ₜ′ = ⟦ t ⟧ₜ × ⟦ t′ ∷ ts ⟧ₜ′ -- The case for bitvectors looks odd so that the right-most bit is bit 0. 𝒦 : ∀ {t} → Literal t → ⟦ t ⟧ₜ 𝒦 (x ′b) = x 𝒦 (x ′i) = x ℤ′.×′ 1ℤ 𝒦 (x ′f) = x 𝒦 (x ′r) = x ℝ′.×′ 1ℝ 𝒦 (xs ′x) = Vec.foldl Bits (λ bs b → (Bool.if b then 1𝔹 else 0𝔹) VecF.∷ bs) VecF.[] xs 𝒦 (x ′a) = Vec.replicate (𝒦 x) fetch : ∀ {n} ts → ⟦ tuple n ts ⟧ₜ → ∀ i → ⟦ Vec.lookup ts i ⟧ₜ fetch (_ ∷ []) x zero = x fetch (_ ∷ _ ∷ _) (x , xs) zero = x fetch (_ ∷ t ∷ ts) (x , xs) (suc i) = fetch (t ∷ ts) xs i updateAt : ∀ {n} ts i → ⟦ Vec.lookup ts i ⟧ₜ → ⟦ tuple n ts ⟧ₜ → ⟦ tuple n ts ⟧ₜ updateAt (_ ∷ []) zero v _ = v updateAt (_ ∷ _ ∷ _) zero v (_ , xs) = v , xs updateAt (_ ∷ t ∷ ts) (suc i) v (x , xs) = x , updateAt (t ∷ ts) i v xs tupCons : ∀ {n t} ts → ⟦ t ⟧ₜ → ⟦ tuple n ts ⟧ₜ → ⟦ tuple _ (t ∷ ts) ⟧ₜ tupCons [] x xs = x tupCons (t ∷ ts) x xs = x , xs tupHead : ∀ {n t} ts → ⟦ tuple (suc n) (t ∷ ts) ⟧ₜ → ⟦ t ⟧ₜ tupHead {t = t} ts xs = fetch (t ∷ ts) xs zero tupTail : ∀ {n t} ts → ⟦ tuple _ (t ∷ ts) ⟧ₜ → ⟦ tuple n ts ⟧ₜ tupTail [] x = _ tupTail (_ ∷ _) (x , xs) = xs equal : ∀ {t} → HasEquality t → ⟦ t ⟧ₜ → ⟦ t ⟧ₜ → Bool equal bool x y = does (x Bool.≟ y) equal int x y = does (x ≟ᶻ y) equal fin x y = does (x Fin.≟ y) equal real x y = does (x ≟ʳ y) equal bits x y = does (x ≟ᵇ y) comp : ∀ {t} → IsNumeric t → ⟦ t ⟧ₜ → ⟦ t ⟧ₜ → Bool comp int x y = does (x <ᶻ? y) comp real x y = does (x <ʳ? y) -- 0 of y is 0 of result join : ∀ t {m n} → ⟦ asType t m ⟧ₜ → ⟦ asType t n ⟧ₜ → ⟦ asType t (n ℕ.+ m) ⟧ₜ join bits {m} x y = y VecF.++ x join (array _) {m} x y = y Vec.++ x -- take from 0 take : ∀ t i {j} → ⟦ asType t (i ℕ.+ j) ⟧ₜ → ⟦ asType t i ⟧ₜ take bits i x = VecF.take i x take (array _) i x = Vec.take i x -- drop from 0 drop : ∀ t i {j} → ⟦ asType t (i ℕ.+ j) ⟧ₜ → ⟦ asType t j ⟧ₜ drop bits i x = VecF.drop i x drop (array _) i x = Vec.drop i x casted : ∀ t {i j} → .(eq : i ≡ j) → ⟦ asType t i ⟧ₜ → ⟦ asType t j ⟧ₜ casted bits eq x = x ∘′ Fin.cast (≡.sym eq) casted (array _) {j = zero} eq [] = [] casted (array t) {j = suc _} eq (x ∷ y) = x ∷ casted (array t) (ℕₚ.suc-injective eq) y module _ where m≤n⇒m+k≡n : ∀ {m n} → m ℕ.≤ n → P.∃ λ k → m ℕ.+ k ≡ n m≤n⇒m+k≡n ℕ.z≤n = _ , ≡.refl m≤n⇒m+k≡n (ℕ.s≤s m≤n) = P.dmap id (≡.cong suc) (m≤n⇒m+k≡n m≤n) slicedSize : ∀ i j (off : Fin (suc i)) → P.∃ λ k → i ℕ.+ j ≡ Fin.toℕ off ℕ.+ (j ℕ.+ k) slicedSize i j off = k , (begin i ℕ.+ j ≡˘⟨ ≡.cong (ℕ._+ j) (P.proj₂ off+k≤i) ⟩ (Fin.toℕ off ℕ.+ k) ℕ.+ j ≡⟨ ℕₚ.+-assoc (Fin.toℕ off) k j ⟩ Fin.toℕ off ℕ.+ (k ℕ.+ j) ≡⟨ ≡.cong (Fin.toℕ off ℕ.+_) (ℕₚ.+-comm k j) ⟩ Fin.toℕ off ℕ.+ (j ℕ.+ k) ∎) where open ≡-Reasoning off+k≤i = m≤n⇒m+k≡n (ℕₚ.≤-pred (Finₚ.toℕ>_ e n ⟧ᵉ σ γ = P.map₂ (λ x → shiftr 2≉0 x n) (⟦ e ⟧ᵉ σ γ) ⟦ rnd e ⟧ᵉ σ γ = P.map₂ ⌊_⌋ (⟦ e ⟧ᵉ σ γ) ⟦ fin x e ⟧ᵉ σ γ = P.map₂ (apply x) (⟦ e ⟧ᵉ σ γ) where apply : ∀ {k ms n} → (All Fin ms → Fin n) → ⟦ Vec.map {n = k} fin ms ⟧ₜ′ → ⟦ fin n ⟧ₜ apply {zero} {[]} f xs = f [] apply {suc k} {_ ∷ ms} f xs = apply (λ x → f (tupHead (Vec.map fin ms) xs ∷ x)) (tupTail (Vec.map fin ms) xs) ⟦ asInt e ⟧ᵉ σ γ = P.map₂ (λ i → Fin.toℕ i ℤ′.×′ 1ℤ) (⟦ e ⟧ᵉ σ γ) ⟦ tup [] ⟧ᵉ σ γ = σ , _ ⟦ tup (e ∷ []) ⟧ᵉ σ γ = ⟦ e ⟧ᵉ σ γ ⟦ tup (e ∷ e′ ∷ es) ⟧ᵉ σ γ = do let σ′ , v = ⟦ e ⟧ᵉ σ γ let σ′′ , vs = ⟦ tup (e′ ∷ es) ⟧ᵉ σ′ γ σ′′ , (v , vs) ⟦ call f e ⟧ᵉ σ γ = P.uncurry ⟦ f ⟧ᶠ (⟦ e ⟧ᵉ σ γ) ⟦ if e then e₁ else e₂ ⟧ᵉ σ γ = do let σ′ , x = ⟦ e ⟧ᵉ σ γ Bool.if x then ⟦ e₁ ⟧ᵉ σ′ γ else ⟦ e₂ ⟧ᵉ σ′ γ ⟦ s ∙ s₁ ⟧ˢ σ γ = do let σ′ , v = ⟦ s ⟧ˢ σ γ S.[ ⟦ s ⟧ˢ σ′ , (λ v → σ′ , ret v) ] v ⟦ skip ⟧ˢ σ γ = σ , next γ ⟦ _≔_ ref {canAssign = canAssign} e ⟧ˢ σ γ = do let σ′ , v = ⟦ e ⟧ᵉ σ γ let σ′′ , γ′ = update (toWitness canAssign) v σ′ γ σ′′ , next γ′ ⟦_⟧ˢ {Γ = Γ} (declare e s) σ γ = do let σ′ , x = ⟦ e ⟧ᵉ σ γ let σ′′ , v = ⟦ s ⟧ˢ σ′ (tupCons Γ x γ) σ′′ , S.map₁ (tupTail Γ) v ⟦ invoke p e ⟧ˢ σ γ = do let σ′ , v = ⟦ e ⟧ᵉ σ γ ⟦ p ⟧ᵖ σ′ v , next γ ⟦ if e then s₁ else s₂ ⟧ˢ σ γ = do let σ′ , x = ⟦ e ⟧ᵉ σ γ Bool.if x then ⟦ s₁ ⟧ˢ σ′ γ else ⟦ s₂ ⟧ˢ σ′ γ ⟦_⟧ˢ {Γ = Γ} {ret = t} (for m s) σ γ = helper m ⟦ s ⟧ˢ σ γ where helper : ∀ m → (⟦ Σ ⟧ₜ′ → ⟦ fin m ∷ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × (⟦ fin m ∷ Γ ⟧ₜ′ ⊎ ⟦ t ⟧ₜ)) → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × (⟦ Γ ⟧ₜ′ ⊎ ⟦ t ⟧ₜ) helper zero s σ γ = σ , next γ helper (suc m) s σ γ with s σ (tupCons Γ zero γ) ... | σ′ , ret v = σ′ , ret v ... | σ′ , next γ′ = helper m s′ σ′ (tupTail Γ γ′) where s′ : ⟦ Σ ⟧ₜ′ → ⟦ fin m ∷ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × (⟦ fin m ∷ Γ ⟧ₜ′ ⊎ ⟦ t ⟧ₜ) s′ σ γ = P.map₂ (S.map₁ (tupCons Γ (tupHead Γ γ) ∘′ (tupTail Γ))) (s σ (tupCons Γ (suc (tupHead Γ γ)) (tupTail Γ γ))) ⟦ s ∙return e ⟧ᶠ σ γ with ⟦ s ⟧ˢ σ γ ... | σ′ , ret v = σ′ , v ... | σ′ , next γ′ = ⟦ e ⟧ᵉ σ′ γ′ ⟦_⟧ᶠ {Γ = Γ} (declare e f) σ γ = do let σ′ , x = ⟦ e ⟧ᵉ σ γ ⟦ f ⟧ᶠ σ′ (tupCons Γ x γ) ⟦ s ∙end ⟧ᵖ σ γ = P.proj₁ (⟦ s ⟧ˢ σ γ) ⟦_⟧ᵖ {Γ = Γ} (declare e p) σ γ = do let σ′ , x = ⟦ e ⟧ᵉ σ γ ⟦ p ⟧ᵖ σ′ (tupCons Γ x γ) update (state i {i