summaryrefslogtreecommitdiff
path: root/src/Helium/Algebra/Ordered/StrictTotal/Bundles.agda
blob: 6904bfb80e443e229adf4a81310593ab75cc99d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
------------------------------------------------------------------------
-- Agda Helium
--
-- Definitions of ordered algebraic structures like monoids and rings
-- (packed in records together with sets, operations, etc.)
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}


module Helium.Algebra.Ordered.StrictTotal.Bundles where

import Algebra.Bundles as Unordered
open import Algebra.Core
open import Data.Sum using (_⊎_)
open import Function using (flip)
open import Helium.Algebra.Core
open import Helium.Algebra.Bundles using
  (RawAlmostGroup; AlmostGroup; AlmostAbelianGroup)
open import Helium.Algebra.Ordered.StrictTotal.Structures
open import Level using (suc; _⊔_)
open import Relation.Binary
open import Relation.Nullary as N

record RawMagma c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
  infixl 7 _∙_
  infix  4 _≈_ _<_
  field
    Carrier : Set c
    _≈_     : Rel Carrier ℓ₁
    _<_     : Rel Carrier ℓ₂
    _∙_     : Op₂ Carrier

  infix 4 _≉_ _≤_ _>_ _≥_
  _≉_ : Rel Carrier _
  x ≉ y = N.¬ x ≈ y

  _≤_ : Rel Carrier _
  x ≤ y = x < y ⊎ x ≈ y

  _>_ : Rel Carrier _
  _>_ = flip _<_

  _≥_ : Rel Carrier _
  _≥_ = flip _≤_

record Magma c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
  infixl 7 _∙_
  infix  4 _≈_ _<_
  field
    Carrier : Set c
    _≈_     : Rel Carrier ℓ₁
    _<_     : Rel Carrier ℓ₂
    _∙_     : Op₂ Carrier
    isMagma : IsMagma _≈_ _<_ _∙_

  open IsMagma isMagma public

  rawMagma : RawMagma _ _ _
  rawMagma = record { _≈_ = _≈_; _<_ = _<_; _∙_ = _∙_ }

  open RawMagma rawMagma public
    using (_≉_; _≤_; _>_; _≥_)

record Semigroup c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
  infixl 7 _∙_
  infix  4 _≈_ _<_
  field
    Carrier     : Set c
    _≈_         : Rel Carrier ℓ₁
    _<_         : Rel Carrier ℓ₂
    _∙_         : Op₂ Carrier
    isSemigroup : IsSemigroup _≈_ _<_ _∙_

  open IsSemigroup isSemigroup public

  magma : Magma c ℓ₁ ℓ₂
  magma = record { isMagma = isMagma }

  open Magma magma public
    using (_≉_; _≤_; _>_; _≥_; rawMagma)

record RawMonoid c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
  infixl 7 _∙_
  infix  4 _≈_ _<_
  field
    Carrier : Set c
    _≈_     : Rel Carrier ℓ₁
    _<_     : Rel Carrier ℓ₂
    _∙_     : Op₂ Carrier
    ε       : Carrier

  rawMagma : RawMagma c ℓ₁ ℓ₂
  rawMagma = record { _≈_ = _≈_; _<_ = _<_; _∙_ = _∙_ }

  open RawMagma rawMagma public
    using (_≉_; _≤_; _>_; _≥_)

record Monoid c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
  infixl 7 _∙_
  infix  4 _≈_ _<_
  field
    Carrier  : Set c
    _≈_      : Rel Carrier ℓ₁
    _<_      : Rel Carrier ℓ₂
    _∙_      : Op₂ Carrier
    ε        : Carrier
    isMonoid : IsMonoid _≈_ _<_ _∙_ ε

  open IsMonoid isMonoid public

  semigroup : Semigroup _ _ _
  semigroup = record { isSemigroup = isSemigroup }

  open Semigroup semigroup public
    using (_≉_; _≤_; _>_; _≥_; rawMagma; magma)

  rawMonoid : RawMonoid _ _ _
  rawMonoid = record { _≈_ = _≈_; _<_ = _<_; _∙_ = _∙_; ε = ε}

record RawGroup c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
  infix  8 _⁻¹
  infixl 7 _∙_
  infix  4 _≈_ _<_
  field
    Carrier : Set c
    _≈_     : Rel Carrier ℓ₁
    _<_     : Rel Carrier ℓ₂
    _∙_     : Op₂ Carrier
    ε       : Carrier
    _⁻¹     : Op₁ Carrier

  rawMonoid : RawMonoid c ℓ₁ ℓ₂
  rawMonoid = record { _≈_ = _≈_; _<_ = _<_; _∙_ = _∙_; ε = ε }

  open RawMonoid rawMonoid public
    using (_≉_; _≤_; _>_; _≥_; rawMagma)


record Group c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
  infix  8 _⁻¹
  infixl 7 _∙_
  infix  4 _≈_ _<_
  field
    Carrier : Set c
    _≈_     : Rel Carrier ℓ₁
    _<_     : Rel Carrier ℓ₂
    _∙_     : Op₂ Carrier
    ε       : Carrier
    _⁻¹     : Op₁ Carrier
    isGroup : IsGroup _≈_ _<_ _∙_ ε _⁻¹

  open IsGroup isGroup public

  rawGroup : RawGroup _ _ _
  rawGroup = record { _≈_ = _≈_; _<_ = _<_; _∙_ = _∙_; ε = ε; _⁻¹ = _⁻¹}

  monoid : Monoid _ _ _
  monoid = record { isMonoid = isMonoid }

  open Monoid monoid public
    using (_≉_; _≤_; _>_; _≥_; rawMagma; magma; semigroup; rawMonoid)

record AbelianGroup c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
  infix  8 _⁻¹
  infixl 7 _∙_
  infix  4 _≈_ _<_
  field
    Carrier        : Set c
    _≈_            : Rel Carrier ℓ₁
    _<_            : Rel Carrier ℓ₂
    _∙_            : Op₂ Carrier
    ε              : Carrier
    _⁻¹            : Op₁ Carrier
    isAbelianGroup : IsAbelianGroup _≈_ _<_ _∙_ ε _⁻¹

  open IsAbelianGroup isAbelianGroup public

  group : Group _ _ _
  group = record { isGroup = isGroup }

  open Group group public
    using
    ( _≉_; _≤_; _>_; _≥_
    ; magma; semigroup; monoid
    ; rawMagma; rawMonoid; rawGroup
    )

record RawRing c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
  infix  8 -_
  infixl 7 _*_
  infixl 6 _+_
  infix  4 _≈_ _<_
  field
    Carrier : Set c
    _≈_     : Rel Carrier ℓ₁
    _<_     : Rel Carrier ℓ₂
    _+_     : Op₂ Carrier
    _*_     : Op₂ Carrier
    -_      : Op₁ Carrier
    0#      : Carrier
    1#      : Carrier

  +-rawGroup : RawGroup c ℓ₁ ℓ₂
  +-rawGroup = record { _≈_ = _≈_; _<_ = _<_; _∙_ = _+_; ε = 0#; _⁻¹ = -_ }

  open RawGroup +-rawGroup public
    using ( _≉_; _≤_; _>_; _≥_ )
    renaming
    ( rawMagma to +-rawMagma
    ; rawMonoid to +-rawMonoid
    )

  *-rawMonoid : Unordered.RawMonoid c ℓ₁
  *-rawMonoid = record { _≈_ = _≈_; _∙_ = _*_; ε = 1# }

  open Unordered.RawMonoid *-rawMonoid public
    using ()
    renaming ( rawMagma to *-rawMagma )

record Ring c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
  infix  8 -_
  infixl 7 _*_
  infixl 6 _+_
  infix  4 _≈_ _<_
  field
    Carrier : Set c
    _≈_     : Rel Carrier ℓ₁
    _<_     : Rel Carrier ℓ₂
    _+_     : Op₂ Carrier
    _*_     : Op₂ Carrier
    -_      : Op₁ Carrier
    0#      : Carrier
    1#      : Carrier
    isRing  : IsRing _≈_ _<_ _+_ _*_ -_ 0# 1#

  open IsRing isRing public

  rawRing : RawRing c ℓ₁ ℓ₂
  rawRing = record
    { _≈_ = _≈_
    ; _<_ = _<_
    ; _+_ = _+_
    ; _*_ = _*_
    ; -_  = -_
    ; 0#  = 0#
    ; 1#  = 1#
    }

  +-abelianGroup : AbelianGroup _ _ _
  +-abelianGroup = record { isAbelianGroup = +-isAbelianGroup }

  open AbelianGroup +-abelianGroup public
    using ( _≉_; _≤_; _>_; _≥_ )
    renaming
    ( rawMagma to +-rawMagma
    ; rawMonoid to +-rawMonoid
    ; rawGroup to +-rawGroup
    ; magma to +-magma
    ; semigroup to +-semigroup
    ; monoid to +-monoid
    ; group to +-group
    )

  *-monoid : Unordered.Monoid _ _
  *-monoid = record { isMonoid = *-isMonoid }

  open Unordered.Monoid *-monoid public
    using ()
    renaming
    ( rawMagma to *-rawMagma
    ; rawMonoid to *-rawMonoid
    ; magma to *-magma
    ; semigroup to *-semigroup
    )

record CommutativeRing c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
  infix  8 -_
  infixl 7 _*_
  infixl 6 _+_
  infix  4 _≈_ _<_
  field
    Carrier            : Set c
    _≈_                : Rel Carrier ℓ₁
    _<_                : Rel Carrier ℓ₂
    _+_                : Op₂ Carrier
    _*_                : Op₂ Carrier
    -_                 : Op₁ Carrier
    0#                 : Carrier
    1#                 : Carrier
    isCommutativeRing  : IsCommutativeRing _≈_ _<_ _+_ _*_ -_ 0# 1#

  open IsCommutativeRing isCommutativeRing public

  ring : Ring _ _ _
  ring = record { isRing = isRing }

  open Ring ring public
    using
    ( _≉_; _≤_; _>_; _≥_
    ; +-rawMagma; +-rawMonoid; +-rawGroup
    ; +-magma; +-semigroup; +-monoid; +-group; +-abelianGroup
    ; *-rawMagma; *-rawMonoid
    ; *-magma; *-semigroup; *-monoid
    )

record RawField c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
  infix  9 _⁻¹
  infix  8 -_
  infixl 7 _*_
  infixl 6 _+_
  infix  4 _≈_ _<_
  field
    Carrier         : Set c
    _≈_             : Rel Carrier ℓ₁
    _<_             : Rel Carrier ℓ₂
    _+_             : Op₂ Carrier
    _*_             : Op₂ Carrier
    -_              : Op₁ Carrier
    0#              : Carrier
    1#              : Carrier
    _⁻¹             : AlmostOp₁ _≈_ 0#

  infixl 7 _/_
  _/_ : AlmostOp₂ _≈_ 0#
  x / y≉0 = x * y≉0 ⁻¹

  rawRing : RawRing c ℓ₁ ℓ₂
  rawRing = record
    { _≈_ = _≈_
    ; _<_ = _<_
    ; _+_ = _+_
    ; _*_ = _*_
    ; -_  = -_
    ; 0#  = 0#
    ; 1#  = 1#
    }

  open RawRing rawRing public
    using
    ( _≉_; _≤_; _>_; _≥_
    ; +-rawMagma; +-rawMonoid; +-rawGroup
    ; *-rawMagma; *-rawMonoid
    )

  *-rawAlmostGroup : RawAlmostGroup c ℓ₁
  *-rawAlmostGroup = record
    { _≈_ = _≈_
    ; _∙_ = _*_
    ; 0#  = 0#
    ; 1#  = 1#
    ; _⁻¹ = _⁻¹
    }

record DivisionRing c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
  infix  9 _⁻¹
  infix  8 -_
  infixl 7 _*_
  infixl 6 _+_
  infix  4 _≈_ _<_
  field
    Carrier         : Set c
    _≈_             : Rel Carrier ℓ₁
    _<_             : Rel Carrier ℓ₂
    _+_             : Op₂ Carrier
    _*_             : Op₂ Carrier
    -_              : Op₁ Carrier
    0#              : Carrier
    1#              : Carrier
    _⁻¹             : AlmostOp₁ _≈_ 0#
    isDivisionRing  : IsDivisionRing _≈_ _<_ _+_ _*_ -_ 0# 1# _⁻¹

  open IsDivisionRing isDivisionRing public

  rawField : RawField c ℓ₁ ℓ₂
  rawField = record
    { _≈_ = _≈_
    ; _<_ = _<_
    ; _+_ = _+_
    ; _*_ = _*_
    ; -_  = -_
    ; 0#  = 0#
    ; 1#  = 1#
    ; _⁻¹ = _⁻¹
    }

  ring : Ring c ℓ₁ ℓ₂
  ring = record { isRing = isRing }

  open Ring ring public
    using
    ( _≉_; _≤_; _>_; _≥_
    ; rawRing
    ; +-rawMagma; +-rawMonoid; +-rawGroup
    ; +-magma; +-semigroup; +-monoid; +-group; +-abelianGroup
    ; *-rawMagma; *-rawMonoid
    ; *-magma; *-semigroup; *-monoid
    )

  *-almostGroup : AlmostGroup _ _
  *-almostGroup = record { isAlmostGroup = *-isAlmostGroup }

  open AlmostGroup *-almostGroup public
    using ()
    renaming (rawAlmostGroup to *-rawAlmostGroup)

record Field c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
  infix  9 _⁻¹
  infix  8 -_
  infixl 7 _*_
  infixl 6 _+_
  infix  4 _≈_ _<_
  field
    Carrier  : Set c
    _≈_      : Rel Carrier ℓ₁
    _<_      : Rel Carrier ℓ₂
    _+_      : Op₂ Carrier
    _*_      : Op₂ Carrier
    -_       : Op₁ Carrier
    0#       : Carrier
    1#       : Carrier
    _⁻¹      : AlmostOp₁ _≈_ 0#
    isField  : IsField _≈_ _<_ _+_ _*_ -_ 0# 1# _⁻¹

  open IsField isField public

  divisionRing : DivisionRing c ℓ₁ ℓ₂
  divisionRing = record { isDivisionRing = isDivisionRing }

  open DivisionRing divisionRing
    using
    ( _≉_; _≤_; _>_; _≥_
    ; +-rawMagma; +-rawMonoid; +-rawGroup
    ; +-magma; +-semigroup; +-monoid; +-group; +-abelianGroup
    ; *-rawMagma; *-rawMonoid; *-rawAlmostGroup
    ; *-magma; *-semigroup; *-monoid; *-almostGroup
    )