blob: 9dc0043d08d19a89c14afc7f4940f0024d6ec31d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
|
------------------------------------------------------------------------
-- Agda Helium
--
-- Some ordered algebraic structures (not packed up with sets,
-- operations, etc.)
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Helium.Algebra.Ordered.StrictTotal.Structures
{a ℓ₁ ℓ₂} {A : Set a} -- The underlying set
(_≈_ : Rel A ℓ₁) -- The underlying equality
(_<_ : Rel A ℓ₂) -- The underlying order
where
import Algebra.Consequences.Setoid as Consequences
open import Algebra.Core
open import Algebra.Definitions _≈_
import Algebra.Structures _≈_ as Unordered
open import Data.Product using (_,_; proj₁; proj₂)
open import Helium.Algebra.Core
open import Helium.Algebra.Definitions _≈_
open import Helium.Algebra.Structures _≈_ using (IsAlmostGroup)
open import Helium.Algebra.Ordered.Definitions _<_
open import Level using (_⊔_)
record IsMagma (∙ : Op₂ A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
field
isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_
∙-cong : Congruent₂ ∙
∙-invariant : Invariant ∙
open IsStrictTotalOrder isStrictTotalOrder public
strictTotalOrder : StrictTotalOrder _ _ _
strictTotalOrder = record { isStrictTotalOrder = isStrictTotalOrder }
open module strictTotalOrder = StrictTotalOrder strictTotalOrder public
using (strictPartialOrder)
∙-congˡ : LeftCongruent ∙
∙-congˡ y≈z = ∙-cong Eq.refl y≈z
∙-congʳ : RightCongruent ∙
∙-congʳ y≈z = ∙-cong y≈z Eq.refl
∙-invariantˡ : LeftInvariant ∙
∙-invariantˡ = proj₁ ∙-invariant
∙-invariantʳ : RightInvariant ∙
∙-invariantʳ = proj₂ ∙-invariant
record IsSemigroup (∙ : Op₂ A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
field
isMagma : IsMagma ∙
assoc : Associative ∙
open IsMagma isMagma public
record IsMonoid (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
field
isSemigroup : IsSemigroup ∙
identity : Identity ε ∙
open IsSemigroup isSemigroup public
identityˡ : LeftIdentity ε ∙
identityˡ = proj₁ identity
identityʳ : RightIdentity ε ∙
identityʳ = proj₂ identity
record IsGroup (_∙_ : Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
field
isMonoid : IsMonoid _∙_ ε
inverse : Inverse ε _⁻¹ _∙_
⁻¹-cong : Congruent₁ _⁻¹
open IsMonoid isMonoid public
infixl 6 _-_
_-_ : Op₂ A
x - y = x ∙ (y ⁻¹)
inverseˡ : LeftInverse ε _⁻¹ _∙_
inverseˡ = proj₁ inverse
inverseʳ : RightInverse ε _⁻¹ _∙_
inverseʳ = proj₂ inverse
uniqueˡ-⁻¹ : ∀ x y → (x ∙ y) ≈ ε → x ≈ (y ⁻¹)
uniqueˡ-⁻¹ = Consequences.assoc+id+invʳ⇒invˡ-unique
strictTotalOrder.Eq.setoid ∙-cong assoc identity inverseʳ
uniqueʳ-⁻¹ : ∀ x y → (x ∙ y) ≈ ε → y ≈ (x ⁻¹)
uniqueʳ-⁻¹ = Consequences.assoc+id+invˡ⇒invʳ-unique
strictTotalOrder.Eq.setoid ∙-cong assoc identity inverseˡ
record IsAbelianGroup (∙ : Op₂ A)
(ε : A) (⁻¹ : Op₁ A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
field
isGroup : IsGroup ∙ ε ⁻¹
comm : Commutative ∙
open IsGroup isGroup public
record IsRing (+ * : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
field
+-isAbelianGroup : IsAbelianGroup + 0# -_
*-isMonoid : Unordered.IsMonoid * 1#
distrib : * DistributesOver +
zero : Zero 0# *
preservesPositive : PreservesPositive 0# *
open IsAbelianGroup +-isAbelianGroup public
renaming
( assoc to +-assoc
; ∙-cong to +-cong
; ∙-congˡ to +-congˡ
; ∙-congʳ to +-congʳ
; identity to +-identity
; identityˡ to +-identityˡ
; identityʳ to +-identityʳ
; inverse to -‿inverse
; inverseˡ to -‿inverseˡ
; inverseʳ to -‿inverseʳ
; ⁻¹-cong to -‿cong
; comm to +-comm
; isMagma to +-isMagma
; isSemigroup to +-isSemigroup
; isMonoid to +-isMonoid
; isGroup to +-isGroup
)
open Unordered.IsMonoid *-isMonoid public
using ()
renaming
( assoc to *-assoc
; ∙-cong to *-cong
; ∙-congˡ to *-congˡ
; ∙-congʳ to *-congʳ
; identity to *-identity
; identityˡ to *-identityˡ
; identityʳ to *-identityʳ
; isMagma to *-isMagma
; isSemigroup to *-isSemigroup
)
distribˡ : * DistributesOverˡ +
distribˡ = proj₁ distrib
distribʳ : * DistributesOverʳ +
distribʳ = proj₂ distrib
zeroˡ : LeftZero 0# *
zeroˡ = proj₁ zero
zeroʳ : RightZero 0# *
zeroʳ = proj₂ zero
record IsCommutativeRing
(+ * : Op₂ A) (- : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
field
isRing : IsRing + * - 0# 1#
*-comm : Commutative *
open IsRing isRing public
record IsDivisionRing
(+ _*_ : Op₂ A) (-_ : Op₁ A) (0# 1# : A)
(_⁻¹ : AlmostOp₁ _≈_ 0#) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
field
+-isAbelianGroup : IsAbelianGroup + 0# -_
*-isAlmostGroup : IsAlmostGroup _*_ 0# 1# _⁻¹
distrib : _*_ DistributesOver +
zero : Zero 0# _*_
preservesPositive : PreservesPositive 0# _*_
infixl 7 _/_
_/_ : AlmostOp₂ _≈_ 0#
x / y≉0 = x * (y≉0 ⁻¹)
open IsAbelianGroup +-isAbelianGroup public
renaming
( assoc to +-assoc
; ∙-cong to +-cong
; ∙-congˡ to +-congˡ
; ∙-congʳ to +-congʳ
; identity to +-identity
; identityˡ to +-identityˡ
; identityʳ to +-identityʳ
; inverse to -‿inverse
; inverseˡ to -‿inverseˡ
; inverseʳ to -‿inverseʳ
; ⁻¹-cong to -‿cong
; uniqueˡ-⁻¹ to uniqueˡ‿-
; uniqueʳ-⁻¹ to uniqueʳ‿-
; comm to +-comm
; isMagma to +-isMagma
; isSemigroup to +-isSemigroup
; isMonoid to +-isMonoid
; isGroup to +-isGroup
)
open IsAlmostGroup *-isAlmostGroup public
using (⁻¹-cong; uniqueˡ-⁻¹; uniqueʳ-⁻¹)
renaming
( assoc to *-assoc
; ∙-cong to *-cong
; ∙-congˡ to *-congˡ
; ∙-congʳ to *-congʳ
; identity to *-identity
; identityˡ to *-identityˡ
; identityʳ to *-identityʳ
; inverse to ⁻¹-inverse
; inverseˡ to ⁻¹-inverseˡ
; inverseʳ to ⁻¹-inverseʳ
; isMagma to *-isMagma
; isSemigroup to *-isSemigroup
; isMonoid to *-isMonoid
)
isRing : IsRing + _*_ -_ 0# 1#
isRing = record
{ +-isAbelianGroup = +-isAbelianGroup
; *-isMonoid = *-isMonoid
; distrib = distrib
; zero = zero
; preservesPositive = preservesPositive
}
open IsRing isRing public
using (distribˡ ; distribʳ ; zeroˡ ; zeroʳ)
record IsField
(+ * : Op₂ A) (-_ : Op₁ A) (0# 1# : A)
(⁻¹ : AlmostOp₁ _≈_ 0#) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
field
isDivisionRing : IsDivisionRing + * -_ 0# 1# ⁻¹
*-comm : Commutative *
open IsDivisionRing isDivisionRing public
isCommutativeRing : IsCommutativeRing + * -_ 0# 1#
isCommutativeRing = record
{ isRing = isRing
; *-comm = *-comm
}
|