summaryrefslogtreecommitdiff
path: root/src/Helium/Algebra/Structures.agda
blob: f88ce592e2578390eb2f24af111e5fce3c733d06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
------------------------------------------------------------------------
-- Agda Helium
--
-- Some more algebraic structures
-- (not packed up with sets, operations, etc.)
------------------------------------------------------------------------

{-# OPTIONS --safe --without-K #-}

open import Relation.Binary.Core using (Rel)
module Helium.Algebra.Structures
  {a ℓ} {A : Set a} -- The underlying set
  (_≈_ : Rel A ℓ)   -- The underlying equality relation
  where

open import Algebra.Core
open import Algebra.Definitions _≈_
open import Algebra.Structures _≈_
open import Data.Product using (proj₁; proj₂)
open import Helium.Algebra.Core
open import Helium.Algebra.Definitions _≈_
import Helium.Algebra.Consequences.Setoid as Consequences
open import Level using (_⊔_)
open import Relation.Nullary using (¬_)

record IsAlmostGroup
         (_∙_ : Op₂ A) (0# 1# : A) (_⁻¹ : AlmostOp₁ _≈_ 0#) : Set (a ⊔ ℓ) where
  field
    isMonoid : IsMonoid _∙_ 1#
    inverse  : AlmostInverse 1# _⁻¹ _∙_
    ⁻¹-cong  : AlmostCongruent₁ _⁻¹

  open IsMonoid isMonoid public

  infixl 6 _-_
  _-_ : AlmostOp₂ _≈_ 0#
  x - y≉0 = x ∙ (y≉0 ⁻¹)

  inverseˡ : AlmostLeftInverse 1# _⁻¹ _∙_
  inverseˡ = proj₁ inverse

  inverseʳ : AlmostRightInverse 1# _⁻¹ _∙_
  inverseʳ = proj₂ inverse

  uniqueˡ-⁻¹ : ∀ x {y} (y≉0 : ¬ y ≈ 0#) → (x ∙ y) ≈ 1# → x ≈ (y≉0 ⁻¹)
  uniqueˡ-⁻¹ = Consequences.assoc+id+invʳ⇒invˡ-unique
                setoid ∙-cong assoc identity inverseʳ

  uniqueʳ-⁻¹ : ∀ {x} (x≉0 : ¬ x ≈ 0#) y → (x ∙ y) ≈ 1# → y ≈ (x≉0 ⁻¹)
  uniqueʳ-⁻¹ = Consequences.assoc+id+invˡ⇒invʳ-unique
                setoid ∙-cong assoc identity inverseˡ

record IsAlmostAbelianGroup
         (∙ : Op₂ A) (0# 1# : A) (⁻¹ : AlmostOp₁ _≈_ 0#) : Set (a ⊔ ℓ) where
  field
    isAlmostGroup : IsAlmostGroup ∙ 0# 1# ⁻¹
    comm          : Commutative ∙

  open IsAlmostGroup isAlmostGroup

  isCommutativeMonoid : IsCommutativeMonoid ∙ 1#
  isCommutativeMonoid = record
    { isMonoid = isMonoid
    ; comm     = comm
    }

  open IsCommutativeMonoid isCommutativeMonoid public
    using (isCommutativeMagma; isCommutativeSemigroup)

record IsDivisionRing
         (+ _*_ : Op₂ A) (-_ : Op₁ A) (0# 1# : A)
         (_⁻¹ : AlmostOp₁ _≈_ 0#) : Set (a ⊔ ℓ) where
  field
    +-isAbelianGroup : IsAbelianGroup + 0# -_
    -- FIXME: unroll definition
    *-isAlmostGroup  : IsAlmostGroup _*_ 0# 1# _⁻¹
    distrib          : _*_ DistributesOver +
    zero             : Zero 0# _*_

  infixl 7 _/_
  _/_ : AlmostOp₂ _≈_ 0#
  x / y≉0 = x * (y≉0 ⁻¹)

  open IsAbelianGroup +-isAbelianGroup public
    renaming
    ( assoc                  to +-assoc
    ; ∙-cong                 to +-cong
    ; ∙-congˡ                to +-congˡ
    ; ∙-congʳ                to +-congʳ
    ; identity               to +-identity
    ; identityˡ              to +-identityˡ
    ; identityʳ              to +-identityʳ
    ; inverse                to -‿inverse
    ; inverseˡ               to -‿inverseˡ
    ; inverseʳ               to -‿inverseʳ
    ; ⁻¹-cong                to -‿cong
    ; uniqueˡ-⁻¹             to uniqueˡ‿-
    ; uniqueʳ-⁻¹             to uniqueʳ‿-
    ; comm                   to +-comm
    ; isMagma                to +-isMagma
    ; isSemigroup            to +-isSemigroup
    ; isMonoid               to +-isMonoid
    ; isCommutativeMagma     to +-isCommutativeMagma
    ; isCommutativeMonoid    to +-isCommutativeMonoid
    ; isCommutativeSemigroup to +-isCommutativeSemigroup
    ; isGroup                to +-isGroup
    )

  open IsAlmostGroup *-isAlmostGroup public
    using (⁻¹-cong; uniqueˡ-⁻¹; uniqueʳ-⁻¹)
    renaming
    ( assoc       to *-assoc
    ; ∙-cong      to *-cong
    ; ∙-congˡ     to *-congˡ
    ; ∙-congʳ     to *-congʳ
    ; identity    to *-identity
    ; identityˡ   to *-identityˡ
    ; identityʳ   to *-identityʳ
    ; inverse     to ⁻¹-inverse
    ; inverseˡ    to ⁻¹-inverseˡ
    ; inverseʳ    to ⁻¹-inverseʳ
    ; isMagma     to *-isMagma
    ; isSemigroup to *-isSemigroup
    ; isMonoid    to *-isMonoid
    )

  isRing : IsRing + _*_ -_ 0# 1#
  isRing = record
    { +-isAbelianGroup = +-isAbelianGroup
    ; *-cong = *-cong
    ; *-assoc = *-assoc
    ; *-identity = *-identity
    ; distrib = distrib
    ; zero = zero
    }

  open IsRing isRing public
    using
    ( distribˡ ; distribʳ ; zeroˡ ; zeroʳ
    ; isNearSemiring ; isSemiringWithoutOne ; isSemiringWithoutAnnihilatingZero
    )

record IsField
         (+ * : Op₂ A) (-_ : Op₁ A) (0# 1# : A)
         (⁻¹ : AlmostOp₁ _≈_ 0#) : Set (a ⊔ ℓ) where
  field
    isDivisionRing : IsDivisionRing + * -_ 0# 1# ⁻¹
    *-comm         : Commutative *

  open IsDivisionRing isDivisionRing public

  isCommutativeRing : IsCommutativeRing + * -_ 0# 1#
  isCommutativeRing = record
    { isRing = isRing
    ; *-comm = *-comm
    }

  open IsCommutativeRing isCommutativeRing public
    using
    ( isCommutativeSemiring
    ; isCommutativeSemiringWithoutOne
    ; *-isCommutativeMagma
    ; *-isCommutativeSemigroup
    ; *-isCommutativeMonoid
    )