blob: 9f936f2a78c6ed2cd58921d4818d36a2711d6e48 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
------------------------------------------------------------------------
-- Agda Helium
--
-- Definition of instructions using the Armv8-M pseudocode.
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module Helium.Data.Pseudocode where
open import Data.Bool as Bool using (true; false)
open import Data.Fin as Fin using (Fin; Fin′; zero; suc; toℕ)
open import Data.Nat as ℕ using (ℕ; zero; suc)
import Data.Nat.Properties as ℕₚ
open import Data.Sum using ([_,_]′)
open import Data.Vec as Vec using (Vec; []; _∷_)
open import Data.Vec.Relation.Unary.All using (All; []; _∷_)
open import Function using (_$_)
open import Helium.Data.Pseudocode.Core as Core public
hiding (module Code)
import Helium.Instructions as Instr
import Relation.Binary.PropositionalEquality as P
open import Relation.Nullary.Decidable.Core using (True)
--- Types
beat : Type
beat = fin 4
elmtMask : Type
elmtMask = bits 4
--- State
State : Vec Type _
State = array (bits 32) 32 -- S
∷ array (bits 32) 16 -- R
∷ bits 16 -- VPR-P0
∷ bits 8 -- VPR-mask
∷ bit -- FPSCR-QC
∷ bool -- _AdvanceVPTState
∷ beat -- _BeatId
∷ []
open Core.Code State public
--- References
-- Direct from State
S : ∀ {n Γ} → Expression {n} Γ (array (bits 32) 32)
S = state 0
R : ∀ {n Γ} → Expression {n} Γ (array (bits 32) 16)
R = state 1
VPR-P0 : ∀ {n Γ} → Expression {n} Γ (bits 16)
VPR-P0 = state 2
VPR-mask : ∀ {n Γ} → Expression {n} Γ (bits 8)
VPR-mask = state 3
FPSCR-QC : ∀ {n Γ} → Expression {n} Γ bit
FPSCR-QC = state 4
AdvanceVPTState : ∀ {n Γ} → Expression {n} Γ bool
AdvanceVPTState = state 5
BeatId : ∀ {n Γ} → Expression {n} Γ beat
BeatId = state 6
-- Indirect
group : ∀ {n Γ t k} m → Expression {n} Γ (asType t (k ℕ.* suc m)) → Expression Γ (array (asType t k) (suc m))
group {k = k} zero x = [ cast (P.trans (ℕₚ.*-comm k 1) (ℕₚ.+-comm k 0)) x ]
group {k = k} (suc m) x = group m (slice x′ (lit (Fin.fromℕ k ′f))) ∶ [ slice (cast (ℕₚ.+-comm k _) x′) (lit (zero ′f)) ]
where
x′ = cast (P.trans (ℕₚ.*-comm k _) (P.cong (k ℕ.+_) (ℕₚ.*-comm _ k))) x
join : ∀ {n Γ t k m} → Expression {n} Γ (array (asType t k) (suc m)) → Expression Γ (asType t (k ℕ.* suc m))
join {k = k} {zero} x = cast (P.trans (ℕₚ.+-comm 0 k) (ℕₚ.*-comm 1 k)) (unbox x)
join {k = k} {suc m} x = cast eq (join (slice x (lit (Fin.fromℕ 1 ′f))) ∶ unbox (slice {i = suc m} (cast (ℕₚ.+-comm 1 _) x) (lit (zero ′f))))
where
eq = P.trans (P.cong (k ℕ.+_) (ℕₚ.*-comm k (suc m))) (ℕₚ.*-comm (suc (suc m)) k)
index : ∀ {n Γ t m} → Expression {n} Γ (asType t (suc m)) → Expression Γ (fin (suc m)) → Expression Γ (elemType t)
index {t = bits} {m} x i = slice (cast (ℕₚ.+-comm 1 m) x) i
index {t = array _} {m} x i = unbox (slice (cast (ℕₚ.+-comm 1 m) x) i)
Q : ∀ {n Γ} → Expression {n} Γ (array (array (bits 32) 4) 8)
Q = group 7 S
elem : ∀ {n Γ t k} m → Expression {n} Γ (asType t (k ℕ.* m)) → Expression Γ (fin k) → Expression Γ (asType t m)
elem {k = zero} m x i = abort i
elem {k = suc k} zero x i = cast (ℕₚ.*-comm k 0) x
elem {k = suc k} (suc m) x i = index (group k (cast (ℕₚ.*-comm (suc k) (suc m)) x)) i
--- Other utiliies
hasBit : ∀ {n Γ m} → Expression {n} Γ (bits (suc m)) → Expression Γ (fin (suc m)) → Expression Γ bool
hasBit {n} x i = index x i ≟ lit ((true ∷ []) ′x)
sliceⁱ : ∀ {n Γ m} → ℕ → Expression {n} Γ int → Expression Γ (bits m)
sliceⁱ {m = zero} n i = lit ([] ′x)
sliceⁱ {m = suc m} n i = sliceⁱ (suc n) i ∶ get n i
--- Functions
Int : ∀ {n} → Function (bits n ∷ bool ∷ []) int
Int = skip ∙return (if var 1 then uint (var 0) else sint (var 0))
-- arguments swapped, pred n
SignedSatQ : ∀ n → Function (int ∷ []) (tuple 2 (bits (suc n) ∷ bool ∷ []))
SignedSatQ n = declare (lit (true ′b)) (
if max <? var 1
then
var 1 ≔ max
else if var 1 <? min
then
var 1 ≔ min
else
var 0 ≔ lit (false ′b)
∙return tup (sliceⁱ 0 (var 1) ∷ var 0 ∷ []))
where
max = lit (2 ′i) ^ n + - lit (1 ′i)
min = - (lit (2 ′i) ^ n)
-- actual shift if 'shift + 1'
LSL-C : ∀ {n} (shift : ℕ) → Function (bits n ∷ []) (tuple 2 (bits n ∷ bit ∷ []))
LSL-C {n} shift = declare (var 0 ∶ lit ((Vec.replicate {n = (suc shift)} false) ′x))
(skip ∙return tup
( slice (var 0) (lit (zero ′f))
∷ slice (cast eq (var 0)) (lit (Fin.inject+ shift (Fin.fromℕ n) ′f))
∷ []))
where
eq = P.trans (ℕₚ.+-comm 1 (shift ℕ.+ n)) (P.cong (ℕ._+ 1) (ℕₚ.+-comm shift n))
--- Procedures
private
div2 : All Fin (4 ∷ []) → Fin 2
div2 (zero ∷ []) = zero
div2 (suc zero ∷ []) = zero
div2 (suc (suc i) ∷ []) = suc zero
copyMasked : Procedure (fin 8 ∷ bits 32 ∷ beat ∷ elmtMask ∷ [])
copyMasked = for 4
-- 0:e 1:dest 2:result 3:beat 4:elmtMask
( if hasBit (var 4) (var 0)
then
elem 8 (index (index Q (var 1)) (var 3)) (var 0) ≔ elem 8 (var 2) (var 0)
else skip
) ∙end
VPTAdvance : Procedure (beat ∷ [])
VPTAdvance = declare (fin div2 (tup (var 0 ∷ []))) (
declare (elem 4 VPR-mask (var 0)) (
-- 0:vptState 1:maskId 2:beat
if var 0 ≟ lit ((true ∷ false ∷ false ∷ false ∷ []) ′x)
then
var 0 ≔ lit (Vec.replicate false ′x)
else if inv (var 0 ≟ lit (Vec.replicate false ′x))
then (
declare (lit ((false ∷ []) ′x)) (
-- 0:inv 1:vptState 2:maskId 3:beat
tup (var 1 ∷ var 0 ∷ []) ≔ call (LSL-C 0) (tup (var 1 ∷ [])) ∙
if var 0 ≟ lit ((true ∷ []) ′x)
then
elem 4 VPR-P0 (var 3) ≔ not (elem 4 VPR-P0 (var 3))
else skip))
else skip ∙
if get 0 (asInt (var 2)) ≟ lit ((true ∷ []) ′x)
then
elem 4 VPR-mask (var 1) ≔ var 0
else skip
∙end))
VPTActive : Function (beat ∷ []) bool
VPTActive = skip ∙return inv (elem 4 VPR-mask (fin div2 (tup (var 0 ∷ []))) ≟ lit (Vec.replicate false ′x))
GetCurInstrBeat : Function [] (tuple 2 (beat ∷ elmtMask ∷ []))
GetCurInstrBeat = declare (lit (Vec.replicate true ′x)) (
-- 0:elmtMask 1:beat
if call VPTActive (tup (BeatId ∷ []))
then
var 0 ≔ var 0 and elem 4 VPR-P0 BeatId
else skip
∙return tup (BeatId ∷ var 0 ∷ []))
-- Assumes:
-- MAX_OVERLAPPING_INSTRS = 1
-- _InstInfo[0].Valid = 1
-- BEATS_PER_TICK = 4
-- procedure argument is action of DecodeExecute
-- and more!
ExecBeats : Procedure [] → Procedure []
ExecBeats DecodeExec =
for 4 (
-- 0:beatId
BeatId ≔ var 0 ∙
AdvanceVPTState ≔ lit (true ′b) ∙
invoke DecodeExec (tup []) ∙
if AdvanceVPTState
then
invoke VPTAdvance (tup (var 0 ∷ []))
else skip)
∙end
from32 : ∀ size {n Γ} → Expression {n} Γ (bits 32) → Expression Γ (array (bits (toℕ (Instr.Size.esize size))) (toℕ (Instr.Size.elements size)))
from32 Instr.8bit = group 3
from32 Instr.16bit = group 1
from32 Instr.32bit = group 0
to32 : ∀ size {n Γ} → Expression {n} Γ (array (bits (toℕ (Instr.Size.esize size))) (toℕ (Instr.Size.elements size))) → Expression Γ (bits 32)
to32 Instr.8bit = join
to32 Instr.16bit = join
to32 Instr.32bit = join
module _ (d : Instr.VecOp₂) where
open Instr.VecOp₂ d
vec-op₂ : Function (bits (toℕ esize) ∷ bits (toℕ esize) ∷ []) (bits (toℕ esize)) → Procedure []
vec-op₂ op =
declare (lit (zero ′f)) (
declare (lit (Vec.replicate false ′x)) (
-- 0:elmtMask 1:curBeat
tup (var 1 ∷ var 0 ∷ []) ≔ call GetCurInstrBeat (tup []) ∙
declare (lit ((Vec.replicate false ′x) ′a)) (
declare (from32 size (index (index Q (lit (src₁ ′f))) (var 2))) (
-- 0:op₁ 1:result 2:elmtMask 3:curBeat
for (toℕ elements) (
-- 0:e 1:op₁ 2:result 3:elmtMask 4:curBeat
declare op₂ (
-- 0:op₂ 1:e 2:op₁ 3:result 4:elmtMask 5:curBeat
index (var 3) (var 1) ≔ call op (tup (index (var 2) (var 1) ∷ var 0 ∷ [])))) ∙
-- 0:op₁ 1:result 2:elmtMask 3:curBeat
invoke copyMasked (tup (lit (dest ′f) ∷ to32 size (var 1) ∷ var 3 ∷ var 2 ∷ []))))
∙end))
where
-- 0:e 1:op₁ 2:result 3:elmtMask 4:curBeat
op₂ =
[ (λ src₂ → index (from32 size (index R (lit (src₂ ′f)))) (lit (zero ′f)))
, (λ src₂ → index (from32 size (index (index Q (lit (src₂ ′f))) (var 4))) (var 0))
]′ src₂
vadd : Instr.VAdd → Procedure []
vadd d = vec-op₂ d (skip ∙return sliceⁱ 0 (uint (var 0) + uint (var 1)))
vsub : Instr.VSub → Procedure []
vsub d = vec-op₂ d (skip ∙return sliceⁱ 0 (uint (var 0) - uint (var 1)))
vhsub : Instr.VHSub → Procedure []
vhsub d = vec-op₂ op₂ (skip ∙return sliceⁱ 1 (toInt (var 0) - toInt (var 1)))
where open Instr.VHSub d; toInt = λ i → call Int (tup (i ∷ lit (unsigned ′b) ∷ []))
vmul : Instr.VMul → Procedure []
vmul d = vec-op₂ d (skip ∙return sliceⁱ 0 (sint (var 0) * sint (var 1)))
vmulh : Instr.VMulH → Procedure []
vmulh d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0) * toInt (var 1)))
where
open Instr.VMulH d; toInt = λ i → call Int (tup (i ∷ lit (unsigned ′b) ∷ []))
vrmulh : Instr.VRMulH → Procedure []
vrmulh d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0) * toInt (var 1) + lit (1 ′i) << toℕ esize-1))
where
open Instr.VRMulH d; toInt = λ i → call Int (tup (i ∷ lit (unsigned ′b) ∷ []))
private
vqr?dmulh : Instr.VQDMulH → Function (int ∷ int ∷ []) int → Procedure []
vqr?dmulh d f =
declare (lit (zero ′f)) (
declare (lit (Vec.replicate false ′x)) (
-- 0:elmtMask 1:curBeat
tup (var 1 ∷ var 0 ∷ []) ≔ call GetCurInstrBeat (tup []) ∙
declare (lit ((Vec.replicate false ′x) ′a)) (
declare (from32 size (index (index Q (lit (src₁ ′f))) (var 2))) (
-- 0:op₁ 1:result 2:elmtMask 3:curBeat
for (toℕ elements) (
-- 0:e 1:op₁ 2:result 3:elmtMask 4:curBeat
declare op₂ (
-- 0:op₂ 1:e 2:op₁ 3:result 4:elmtMask 5:curBeat
declare (call f (tup (sint (index (var 2) (var 1)) ∷ sint (var 0) ∷ []))) (
-- 0:value 1:op₂ 2:e 3:op₁ 4:result 5:elmtMask 6:curBeat
declare (lit (false ′b)) (
-- 0:sat 1:value 2:op₂ 3:e 4:op₁ 5:result 6:elmtMask 7:curBeat
tup (index (var 5) (var 3) ∷ var 0 ∷ []) ≔ call (SignedSatQ (toℕ esize-1)) (tup (var 1 ∷ [])) ∙
if var 0 && hasBit (var 6) (fin e*esize>>3 (tup (var 3 ∷ [])))
then
FPSCR-QC ≔ lit ((true ∷ []) ′x)
else skip)))) ∙
-- 0:op₁ 1:result 2:elmtMask 3:curBeat
invoke copyMasked (tup (lit (dest ′f) ∷ to32 size (var 1) ∷ var 3 ∷ var 2 ∷ []))))
∙end))
where
open Instr.VecOp₂ d
-- 0:e 1:op₁ 2:result 3:elmtMask 4:curBeat
op₂ =
[ (λ src₂ → index (from32 size (index R (lit (src₂ ′f)))) (lit (zero ′f)))
, (λ src₂ → index (from32 size (index (index Q (lit (src₂ ′f))) (var 4))) (var 0))
]′ src₂
e*esize>>3 : All Fin (toℕ elements ∷ []) → Fin 4
e*esize>>3 (x ∷ []) = helper size x
where
helper : ∀ size → Fin′ (Instr.Size.elements size) → Fin 4
helper Instr.8bit i = Fin.combine i (zero {0})
helper Instr.16bit i = Fin.combine i (zero {1})
helper Instr.32bit i = Fin.combine i zero
vqdmulh : Instr.VQDMulH → Procedure []
vqdmulh d = vqr?dmulh d (skip ∙return lit (2 ′i) * var 0 * var 1 >> toℕ esize)
where open Instr.VecOp₂ d using (esize)
vqrdmulh : Instr.VQRDMulH → Procedure []
vqrdmulh d = vqr?dmulh d (skip ∙return lit (2 ′i) * var 0 * var 1 + lit (1 ′i) << toℕ esize-1 >> toℕ esize)
where open Instr.VecOp₂ d using (esize; esize-1)
|