1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
|
{-# OPTIONS --safe --without-K #-}
module Helium.Instructions where
open import Data.Bool
open import Data.Fin
open import Data.Nat hiding (pred)
open import Data.Product using (∃; _,_)
open import Data.Sum
open import Relation.Binary.PropositionalEquality
GenReg : Set
GenReg = Fin 16
VecReg : Set
VecReg = Fin 8
record VecOp₂ : Set where
field
size : Fin 3
dest : VecReg
src₁ : VecReg
src₂ : GenReg ⊎ VecReg
private
split32 : ∃ λ (elements : Fin 5) → ∃ λ (esize-1 : Fin 32) → toℕ elements * toℕ (suc esize-1) ≡ 32
split32 = helper size
where
helper : _ → _
helper zero = # 4 , # 7 , refl
helper (suc zero) = # 2 , # 15 , refl
helper (suc (suc zero)) = # 1 , # 31 , refl
elements : Fin 5
elements with (elmt , _ , _) ← split32 = elmt
esize-1 : Fin 32
esize-1 with (_ , esize-1 , _) ← split32 = esize-1
esize : Fin 33
esize = suc esize-1
e*e≡32 : toℕ elements * toℕ esize ≡ 32
e*e≡32 with (_ , _ , eq) ← split32 = eq
VAdd = VecOp₂
VSub = VecOp₂
record VHSub : Set where
field
op₂ : VecOp₂
unsigned : Bool
open VecOp₂ op₂ public
VMul = VecOp₂
record VMulH : Set where
field
op₂ : VecOp₂
unsigned : Bool
rounding : Bool
open VecOp₂ op₂ public
|