summaryrefslogtreecommitdiff
path: root/src/Helium/Instructions/Base.agda
blob: 29e163d183a593d7de92a6dc2123c03427ae5e83 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
------------------------------------------------------------------------
-- Agda Helium
--
-- Definition of instructions using the Armv8-M pseudocode.
------------------------------------------------------------------------

{-# OPTIONS --safe --without-K #-}

module Helium.Instructions.Base where

open import Data.Bool as Bool using (true; false)
open import Data.Fin as Fin using (Fin; Fin′; zero; suc; toℕ)
open import Data.Fin.Patterns
open import Data.Nat as ℕ using (ℕ; zero; suc)
import Data.Nat.Properties as ℕₚ
open import Data.Sum using ([_,_]′; inj₂)
open import Data.Vec as Vec using (Vec; []; _∷_)
open import Data.Vec.Relation.Unary.All using (All; []; _∷_)
open import Function using (_$_)
open import Helium.Data.Pseudocode.Core as Core public
  hiding (module Code)
import Helium.Instructions.Core as Instr
import Relation.Binary.PropositionalEquality as P
open import Relation.Nullary.Decidable.Core using (True)

--- Types

beat : Type
beat = fin 4

elmtMask : Type
elmtMask = bits 4

--- State

State : Vec Type _
State = array (bits 32) 32      -- S
      ∷ array (bits 32) 16      -- R
      ∷ bits 16                 -- VPR-P0
      ∷ bits 8                  -- VPR-mask
      ∷ bit                     -- FPSCR-QC
      ∷ bool                    -- _AdvanceVPTState
      ∷ beat                    -- _BeatId
      ∷ []

open Core.Code State public

--- References

-- Direct from State

S : ∀ {n Γ} → Expression {n} Γ (array (bits 32) 32)
S = state 0F

R : ∀ {n Γ} → Expression {n} Γ (array (bits 32) 16)
R = state 1F

VPR-P0 : ∀ {n Γ} → Expression {n} Γ (bits 16)
VPR-P0 = state 2F

VPR-mask : ∀ {n Γ} → Expression {n} Γ (bits 8)
VPR-mask = state 3F

FPSCR-QC : ∀ {n Γ} → Expression {n} Γ bit
FPSCR-QC = state 4F

AdvanceVPTState : ∀ {n Γ} → Expression {n} Γ bool
AdvanceVPTState = state 5F

BeatId : ∀ {n Γ} → Expression {n} Γ beat
BeatId = state 6F

-- Indirect

group : ∀ {n Γ t k} m → Expression {n} Γ (asType t (k ℕ.* suc m)) → Expression Γ (array (asType t k) (suc m))
group {k = k} zero    x = [ cast (P.trans (ℕₚ.*-comm k 1) (ℕₚ.+-comm k 0)) x ]
group {k = k} (suc m) x = group m (slice x′ (lit (Fin.fromℕ k ′f))) ∶ [ slice (cast (ℕₚ.+-comm k _) x′) (lit (zero ′f))  ]
  where
  x′ = cast (P.trans (ℕₚ.*-comm k _) (P.cong (k ℕ.+_) (ℕₚ.*-comm _ k))) x

join : ∀ {n Γ t k m} → Expression {n} Γ (array (asType t k) (suc m)) → Expression Γ (asType t (k ℕ.* suc m))
join {k = k} {zero}  x = cast (P.trans (ℕₚ.+-comm 0 k) (ℕₚ.*-comm 1 k)) (unbox x)
join {k = k} {suc m} x = cast eq (join (slice x (lit (Fin.fromℕ 1 ′f))) ∶ unbox (slice {i = suc m} (cast (ℕₚ.+-comm 1 _) x) (lit (zero ′f))))
  where
  eq = P.trans (P.cong (k ℕ.+_) (ℕₚ.*-comm k (suc m))) (ℕₚ.*-comm (suc (suc m)) k)

index : ∀ {n Γ t m} → Expression {n} Γ (asType t (suc m)) → Expression Γ (fin (suc m)) → Expression Γ (elemType t)
index {m = m} x i = unbox (slice (cast (ℕₚ.+-comm 1 m) x) i)

Q : ∀ {n Γ} → Expression {n} Γ (array (array (bits 32) 4) 8)
Q = group 7 S

elem : ∀ {n Γ t k} m → Expression {n} Γ (asType t (k ℕ.* m)) → Expression Γ (fin k) → Expression Γ (asType t m)
elem {k = zero}  m       x i = abort i
elem {k = suc k} zero    x i = cast (ℕₚ.*-comm k 0) x
elem {k = suc k} (suc m) x i = index (group k (cast (ℕₚ.*-comm (suc k) (suc m)) x)) i

--- Other utiliies

hasBit : ∀ {n Γ m} → Expression {n} Γ (bits (suc m)) → Expression Γ (fin (suc m)) → Expression Γ bool
hasBit {n} x i = index x i ≟ lit (true ′x)

sliceⁱ : ∀ {n Γ m} → ℕ → Expression {n} Γ int → Expression Γ (bits m)
sliceⁱ {m = zero}  n i = lit ([] ′xs)
sliceⁱ {m = suc m} n i = sliceⁱ (suc n) i ∶ [ get n i ]

--- Functions

Int : ∀ {n} → Function (bits n ∷ bool ∷ []) int
Int = skip ∙return (if var 1F then uint (var 0F) else sint (var 0F))

-- arguments swapped, pred n
SignedSatQ : ∀ n → Function (int ∷ []) (tuple 2 (bits (suc n) ∷ bool ∷ []))
SignedSatQ n = declare (lit (true ′b)) (
  if max <? var 1F
  then
    var 1F ≔ max
  else if var 1F <? min
  then
    var 1F ≔ min
  else
    var 0F ≔ lit (false ′b)
  ∙return tup (sliceⁱ 0 (var 1F) ∷ var 0F ∷ []))
  where
  max = lit (2 ′i) ^ n + - lit (1 ′i)
  min = - (lit (2 ′i) ^ n)

-- actual shift if 'shift + 1'
LSL-C : ∀ {n} (shift : ℕ) → Function (bits n ∷ []) (tuple 2 (bits n ∷ bit ∷ []))
LSL-C {n} shift = declare (var 0F ∶ lit ((Vec.replicate {n = (suc shift)} false) ′xs))
  (skip ∙return tup
    ( slice (var 0F) (lit (zero ′f))
    ∷ unbox (slice (cast eq (var 0F)) (lit (((Fin.fromℕ n) Fin.↑ˡ shift) ′f)))
    ∷ []))
  where
  eq = P.trans (ℕₚ.+-comm 1 (shift ℕ.+ n)) (P.cong (ℕ._+ 1) (ℕₚ.+-comm shift n))

--- Procedures

private
  div2 : All Fin (4 ∷ []) → Fin 2
  div2 (zero        ∷ []) = zero
  div2 (suc zero    ∷ []) = zero
  div2 (suc (suc i) ∷ []) = suc zero

copyMasked : Procedure (fin 8 ∷ bits 32 ∷ beat ∷ elmtMask ∷ [])
copyMasked = for 4
  -- 0:e 1:dest 2:result 3:beat 4:elmtMask
  ( if hasBit (var 4F) (var 0F)
    then
      elem 8 (index (index Q (var 1F)) (var 3F)) (var 0F) ≔ elem 8 (var 2F) (var 0F)
  ) ∙end

VPTAdvance : Procedure (beat ∷ [])
VPTAdvance = declare (fin div2 (tup (var 0F ∷ []))) (
  declare (elem 4 VPR-mask (var 0F)) (
    -- 0:vptState 1:maskId 2:beat
    if var 0F ≟ lit ((true ∷ false ∷ false ∷ false ∷ []) ′xs)
    then
      var 0F ≔ lit (Vec.replicate false ′xs)
    else if inv (var 0F ≟ lit (Vec.replicate false ′xs))
    then (
      declare (lit (false ′x)) (
        -- 0:inv 1:vptState 2:maskId 3:beat
        tup (var 1F ∷ var 0F ∷ []) ≔ call (LSL-C 0) (var 1F ∷ []) ∙
        if var 0F ≟ lit (true ′x)
        then
          elem 4 VPR-P0 (var 3F) ≔ not (elem 4 VPR-P0 (var 3F)))) ∙
    if get 0 (asInt (var 2F)) ≟ lit (true ′x)
    then
      elem 4 VPR-mask (var 1F) ≔ var 0F))
    ∙end

VPTActive : Function (beat ∷ []) bool
VPTActive = skip ∙return inv (elem 4 VPR-mask (fin div2 (tup (var 0F ∷ []))) ≟ lit (Vec.replicate false ′xs))

GetCurInstrBeat : Function [] (tuple 2 (beat ∷ elmtMask ∷ []))
GetCurInstrBeat = declare (lit (Vec.replicate true ′xs)) (
  -- 0:elmtMask 1:beat
  if call VPTActive (BeatId ∷ [])
  then
    var 0F ≔ var 0F and elem 4 VPR-P0 BeatId
  ∙return tup (BeatId ∷ var 0F ∷ []))

-- Assumes:
--   MAX_OVERLAPPING_INSTRS = 1
--   _InstInfo[0].Valid = 1
--   BEATS_PER_TICK = 4
--   procedure argument is action of DecodeExecute
-- and more!
ExecBeats : Procedure [] → Procedure []
ExecBeats DecodeExec =
  for 4 (
    -- 0:beatId
    BeatId ≔ var 0F ∙
    AdvanceVPTState ≔ lit (true ′b) ∙
    invoke DecodeExec [] ∙
    if AdvanceVPTState
    then
      invoke VPTAdvance (var 0F ∷ []))
  ∙end

from32 : ∀ size {n Γ} → Expression {n} Γ (bits 32) → Expression Γ (array (bits (toℕ (Instr.Size.esize size))) (toℕ (Instr.Size.elements size)))
from32 Instr.8bit  = group 3
from32 Instr.16bit = group 1
from32 Instr.32bit = group 0

to32 : ∀ size {n Γ} → Expression {n} Γ (array (bits (toℕ (Instr.Size.esize size))) (toℕ (Instr.Size.elements size))) → Expression Γ (bits 32)
to32 Instr.8bit  = join
to32 Instr.16bit = join
to32 Instr.32bit = join

module _ (d : Instr.VecOp₂) where
  open Instr.VecOp₂ d

 -- 0:op₂ 1:e 2:op₁ 3:result 4:elmtMask 5:curBeat
  vec-op₂′ : Statement (bits (toℕ esize) ∷ fin (toℕ elements) ∷ array (bits (toℕ esize)) (toℕ elements) ∷ array (bits (toℕ esize)) (toℕ elements) ∷ elmtMask ∷ beat ∷ []) → Procedure []
  vec-op₂′ op = declare (lit (zero ′f)) (
    declare (lit (Vec.replicate false ′xs)) (
    -- 0:elmtMask 1:curBeat
    tup (var 1F ∷ var 0F ∷ []) ≔ call GetCurInstrBeat [] ∙
    declare (lit ((Vec.replicate false ′xs) ′a)) (
    declare (from32 size (index (index Q (lit (src₁ ′f))) (var 2F))) (
    -- 0:op₁ 1:result 2:elmtMask 3:curBeat
    for (toℕ elements) (
       -- 0:e 1:op₁ 2:result 3:elmtMask 4:curBeat
      declare op₂ op ) ∙
    -- 0:op₁ 1:result 2:elmtMask 3:curBeat
    invoke copyMasked (lit (dest ′f) ∷ to32 size (var 1F) ∷ var 3F ∷ var 2F ∷ [])))))
    ∙end
    where
    -- 0:e 1:op₁ 2:result 3:elmtMask 4:curBeat
    op₂ =
      [ (λ src₂ → index (from32 size (index R (lit (src₂ ′f)))) (lit (zero ′f)))
      , (λ src₂ → index (from32 size (index (index Q (lit (src₂ ′f))) (var 4F))) (var 0F))
      ]′ src₂

  vec-op₂ : Function (bits (toℕ esize) ∷ bits (toℕ esize) ∷ []) (bits (toℕ esize)) → Procedure []
  vec-op₂ op = vec-op₂′ (index (var 3F) (var 1F) ≔ call op (index (var 2F) (var 1F) ∷ var 0F ∷ []))

vadd : Instr.VAdd → Procedure []
vadd d = vec-op₂ d (skip ∙return sliceⁱ 0 (uint (var 0F) + uint (var 1F)))

vsub : Instr.VSub → Procedure []
vsub d = vec-op₂ d (skip ∙return sliceⁱ 0 (uint (var 0F) - uint (var 1F)))

vhsub : Instr.VHSub → Procedure []
vhsub d = vec-op₂ op₂ (skip ∙return sliceⁱ 1 (toInt (var 0F) - toInt (var 1F)))
  where open Instr.VHSub d; toInt = λ i → call Int (i ∷ lit (unsigned ′b) ∷ [])

vmul : Instr.VMul → Procedure []
vmul d = vec-op₂ d (skip ∙return sliceⁱ 0 (sint (var 0F) * sint (var 1F)))

vmulh : Instr.VMulH → Procedure []
vmulh d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0F) * toInt (var 1F)))
  where
  open Instr.VMulH d; toInt = λ i → call Int (i ∷ lit (unsigned ′b) ∷ [])

vrmulh : Instr.VRMulH → Procedure []
vrmulh d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0F) * toInt (var 1F) + lit (1 ′i) << toℕ esize-1))
  where
  open Instr.VRMulH d; toInt = λ i → call Int (i ∷ lit (unsigned ′b) ∷ [])

vmla : Instr.VMlA → Procedure []
vmla d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0F) * element₂ + toInt (var 1F)))
  where
  open Instr.VMlA d
  op₂ = record { size = size ; dest = acc ; src₁ = src₁ ; src₂ = inj₂ acc }
  toInt = λ i → call Int (i ∷ lit (unsigned ′b) ∷ [])
  element₂ = toInt (index (from32 size (index R (lit (src₂ ′f)))) (lit (zero ′f)))

private
  vqr?dmulh : Instr.VQDMulH → Function (int ∷ int ∷ []) int → Procedure []
  vqr?dmulh d f = vec-op₂′ d (
    -- 0:op₂ 1:e 2:op₁ 3:result 4:elmtMask 5:curBeat
    declare (call f (sint (index (var 2F) (var 1F)) ∷ sint (var 0F) ∷ [])) (
    declare (lit (false ′b)) (
      -- 0:sat 1:value 2:op₂ 3:e 4:op₁ 5:result 6:elmtMask 7:curBeat
      tup (index (var 5F) (var 3F) ∷ var 0F ∷ []) ≔ call (SignedSatQ (toℕ esize-1)) (var 1F ∷ []) ∙
      if var 0F && hasBit (var 6F) (fin e*esize>>3 (tup ((var 3F) ∷ [])))
      then
        FPSCR-QC ≔ lit (true ′x))))
    where
    open Instr.VecOp₂ d

    e*esize>>3 : All Fin (toℕ elements ∷ []) → Fin 4
    e*esize>>3 (x ∷ []) = helper size x
      where
      helper : ∀ size → Fin′ (Instr.Size.elements size) → Fin 4
      helper Instr.8bit  i = Fin.combine i (zero {0})
      helper Instr.16bit i = Fin.combine i (zero {1})
      helper Instr.32bit i = Fin.combine i zero

vqdmulh : Instr.VQDMulH → Procedure []
vqdmulh d = vqr?dmulh d (skip ∙return lit (2 ′i) * var 0F * var 1F >> toℕ esize)
  where open Instr.VecOp₂ d using (esize)

vqrdmulh : Instr.VQRDMulH → Procedure []
vqrdmulh d = vqr?dmulh d (skip ∙return lit (2 ′i) * var 0F * var 1F + lit (1 ′i) << toℕ esize-1 >> toℕ esize)
  where open Instr.VecOp₂ d using (esize; esize-1)