blob: 0a0e01f3539a81d1ab463f139ba95120b63f9e57 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
------------------------------------------------------------------------
-- Agda Helium
--
-- Definition of instructions using the Armv8-M pseudocode.
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module Helium.Instructions.Base where
open import Data.Bool as Bool using (true; false)
open import Data.Fin as Fin using (Fin; Fin′; zero; suc; toℕ)
open import Data.Fin.Patterns
open import Data.Nat as ℕ using (ℕ; zero; suc)
import Data.Nat.Properties as ℕₚ
open import Data.Sum using ([_,_]′; inj₂)
open import Data.Vec as Vec using (Vec; []; _∷_)
open import Data.Vec.Relation.Unary.All using (All; []; _∷_)
open import Function using (_$_)
open import Helium.Data.Pseudocode.Core as Core public
hiding (module Code)
import Helium.Instructions.Core as Instr
import Relation.Binary.PropositionalEquality as P
open import Relation.Nullary.Decidable.Core using (True)
--- Types
beat : Type
beat = fin 4
elmtMask : Type
elmtMask = bits 4
--- State
State : Vec Type _
State = array (bits 32) 32 -- S
∷ array (bits 32) 16 -- R
∷ bits 16 -- VPR-P0
∷ bits 8 -- VPR-mask
∷ bit -- FPSCR-QC
∷ bool -- _AdvanceVPTState
∷ beat -- _BeatId
∷ []
open Core.Code State public
--- References
-- Direct from State
S : ∀ {n Γ} → Expression {n} Γ (array (bits 32) 32)
S = state 0F
R : ∀ {n Γ} → Expression {n} Γ (array (bits 32) 16)
R = state 1F
VPR-P0 : ∀ {n Γ} → Expression {n} Γ (bits 16)
VPR-P0 = state 2F
VPR-mask : ∀ {n Γ} → Expression {n} Γ (bits 8)
VPR-mask = state 3F
FPSCR-QC : ∀ {n Γ} → Expression {n} Γ bit
FPSCR-QC = state 4F
AdvanceVPTState : ∀ {n Γ} → Expression {n} Γ bool
AdvanceVPTState = state 5F
BeatId : ∀ {n Γ} → Expression {n} Γ beat
BeatId = state 6F
-- Indirect
group : ∀ {n Γ t k} m → Expression {n} Γ (asType t (k ℕ.* suc m)) → Expression Γ (array (asType t k) (suc m))
group {k = k} zero x = [ cast (P.trans (ℕₚ.*-comm k 1) (ℕₚ.+-comm k 0)) x ]
group {k = k} (suc m) x = group m (slice x′ (lit (Fin.fromℕ k ′f))) ∶ [ slice (cast (ℕₚ.+-comm k _) x′) (lit (zero ′f)) ]
where
x′ = cast (P.trans (ℕₚ.*-comm k _) (P.cong (k ℕ.+_) (ℕₚ.*-comm _ k))) x
join : ∀ {n Γ t k m} → Expression {n} Γ (array (asType t k) (suc m)) → Expression Γ (asType t (k ℕ.* suc m))
join {k = k} {zero} x = cast (P.trans (ℕₚ.+-comm 0 k) (ℕₚ.*-comm 1 k)) (unbox x)
join {k = k} {suc m} x = cast eq (join (slice x (lit (Fin.fromℕ 1 ′f))) ∶ unbox (slice {i = suc m} (cast (ℕₚ.+-comm 1 _) x) (lit (zero ′f))))
where
eq = P.trans (P.cong (k ℕ.+_) (ℕₚ.*-comm k (suc m))) (ℕₚ.*-comm (suc (suc m)) k)
index : ∀ {n Γ t m} → Expression {n} Γ (asType t (suc m)) → Expression Γ (fin (suc m)) → Expression Γ (elemType t)
index {m = m} x i = unbox (slice (cast (ℕₚ.+-comm 1 m) x) i)
Q : ∀ {n Γ} → Expression {n} Γ (array (array (bits 32) 4) 8)
Q = group 7 S
elem : ∀ {n Γ t k} m → Expression {n} Γ (asType t (k ℕ.* m)) → Expression Γ (fin k) → Expression Γ (asType t m)
elem {k = zero} m x i = abort i
elem {k = suc k} zero x i = cast (ℕₚ.*-comm k 0) x
elem {k = suc k} (suc m) x i = index (group k (cast (ℕₚ.*-comm (suc k) (suc m)) x)) i
--- Other utiliies
hasBit : ∀ {n Γ m} → Expression {n} Γ (bits (suc m)) → Expression Γ (fin (suc m)) → Expression Γ bool
hasBit {n} x i = index x i ≟ lit (true ′x)
sliceⁱ : ∀ {n Γ m} → ℕ → Expression {n} Γ int → Expression Γ (bits m)
sliceⁱ {m = zero} n i = lit ([] ′xs)
sliceⁱ {m = suc m} n i = sliceⁱ (suc n) i ∶ [ get n i ]
--- Functions
Int : ∀ {n} → Function (bits n ∷ bool ∷ []) int
Int = skip ∙return (if var 1F then uint (var 0F) else sint (var 0F))
-- arguments swapped, pred n
SignedSatQ : ∀ n → Function (int ∷ []) (tuple 2 (bits (suc n) ∷ bool ∷ []))
SignedSatQ n = declare (lit (true ′b)) (
if max <? var 1F
then
var 1F ≔ max
else if var 1F <? min
then
var 1F ≔ min
else
var 0F ≔ lit (false ′b)
∙return tup (sliceⁱ 0 (var 1F) ∷ var 0F ∷ []))
where
max = lit (2 ′i) ^ n + - lit (1 ′i)
min = - (lit (2 ′i) ^ n)
-- actual shift if 'shift + 1'
LSL-C : ∀ {n} (shift : ℕ) → Function (bits n ∷ []) (tuple 2 (bits n ∷ bit ∷ []))
LSL-C {n} shift = declare (var 0F ∶ lit ((Vec.replicate {n = (suc shift)} false) ′xs))
(skip ∙return tup
( slice (var 0F) (lit (zero ′f))
∷ unbox (slice (cast eq (var 0F)) (lit (Fin.inject+ shift (Fin.fromℕ n) ′f)))
∷ []))
where
eq = P.trans (ℕₚ.+-comm 1 (shift ℕ.+ n)) (P.cong (ℕ._+ 1) (ℕₚ.+-comm shift n))
--- Procedures
private
div2 : All Fin (4 ∷ []) → Fin 2
div2 (zero ∷ []) = zero
div2 (suc zero ∷ []) = zero
div2 (suc (suc i) ∷ []) = suc zero
copyMasked : Procedure (fin 8 ∷ bits 32 ∷ beat ∷ elmtMask ∷ [])
copyMasked = for 4
-- 0:e 1:dest 2:result 3:beat 4:elmtMask
( if hasBit (var 4F) (var 0F)
then
elem 8 (index (index Q (var 1F)) (var 3F)) (var 0F) ≔ elem 8 (var 2F) (var 0F)
else skip
) ∙end
VPTAdvance : Procedure (beat ∷ [])
VPTAdvance = declare (fin div2 (tup (var 0F ∷ []))) (
declare (elem 4 VPR-mask (var 0F)) (
-- 0:vptState 1:maskId 2:beat
if var 0F ≟ lit ((true ∷ false ∷ false ∷ false ∷ []) ′xs)
then
var 0F ≔ lit (Vec.replicate false ′xs)
else if inv (var 0F ≟ lit (Vec.replicate false ′xs))
then (
declare (lit (false ′x)) (
-- 0:inv 1:vptState 2:maskId 3:beat
tup (var 1F ∷ var 0F ∷ []) ≔ call (LSL-C 0) (var 1F ∷ []) ∙
if var 0F ≟ lit (true ′x)
then
elem 4 VPR-P0 (var 3F) ≔ not (elem 4 VPR-P0 (var 3F))
else skip))
else skip ∙
if get 0 (asInt (var 2F)) ≟ lit (true ′x)
then
elem 4 VPR-mask (var 1F) ≔ var 0F
else skip))
∙end
VPTActive : Function (beat ∷ []) bool
VPTActive = skip ∙return inv (elem 4 VPR-mask (fin div2 (tup (var 0F ∷ []))) ≟ lit (Vec.replicate false ′xs))
GetCurInstrBeat : Function [] (tuple 2 (beat ∷ elmtMask ∷ []))
GetCurInstrBeat = declare (lit (Vec.replicate true ′xs)) (
-- 0:elmtMask 1:beat
if call VPTActive (BeatId ∷ [])
then
var 0F ≔ var 0F and elem 4 VPR-P0 BeatId
else skip
∙return tup (BeatId ∷ var 0F ∷ []))
-- Assumes:
-- MAX_OVERLAPPING_INSTRS = 1
-- _InstInfo[0].Valid = 1
-- BEATS_PER_TICK = 4
-- procedure argument is action of DecodeExecute
-- and more!
ExecBeats : Procedure [] → Procedure []
ExecBeats DecodeExec =
for 4 (
-- 0:beatId
BeatId ≔ var 0F ∙
AdvanceVPTState ≔ lit (true ′b) ∙
invoke DecodeExec [] ∙
if AdvanceVPTState
then
invoke VPTAdvance (var 0F ∷ [])
else skip)
∙end
from32 : ∀ size {n Γ} → Expression {n} Γ (bits 32) → Expression Γ (array (bits (toℕ (Instr.Size.esize size))) (toℕ (Instr.Size.elements size)))
from32 Instr.8bit = group 3
from32 Instr.16bit = group 1
from32 Instr.32bit = group 0
to32 : ∀ size {n Γ} → Expression {n} Γ (array (bits (toℕ (Instr.Size.esize size))) (toℕ (Instr.Size.elements size))) → Expression Γ (bits 32)
to32 Instr.8bit = join
to32 Instr.16bit = join
to32 Instr.32bit = join
module _ (d : Instr.VecOp₂) where
open Instr.VecOp₂ d
-- 0:op₂ 1:e 2:op₁ 3:result 4:elmtMask 5:curBeat
vec-op₂′ : Statement (bits (toℕ esize) ∷ fin (toℕ elements) ∷ array (bits (toℕ esize)) (toℕ elements) ∷ array (bits (toℕ esize)) (toℕ elements) ∷ elmtMask ∷ beat ∷ []) → Procedure []
vec-op₂′ op = declare (lit (zero ′f)) (
declare (lit (Vec.replicate false ′xs)) (
-- 0:elmtMask 1:curBeat
tup (var 1F ∷ var 0F ∷ []) ≔ call GetCurInstrBeat [] ∙
declare (lit ((Vec.replicate false ′xs) ′a)) (
declare (from32 size (index (index Q (lit (src₁ ′f))) (var 2F))) (
-- 0:op₁ 1:result 2:elmtMask 3:curBeat
for (toℕ elements) (
-- 0:e 1:op₁ 2:result 3:elmtMask 4:curBeat
declare op₂ op ) ∙
-- 0:op₁ 1:result 2:elmtMask 3:curBeat
invoke copyMasked (lit (dest ′f) ∷ to32 size (var 1F) ∷ var 3F ∷ var 2F ∷ [])))))
∙end
where
-- 0:e 1:op₁ 2:result 3:elmtMask 4:curBeat
op₂ =
[ (λ src₂ → index (from32 size (index R (lit (src₂ ′f)))) (lit (zero ′f)))
, (λ src₂ → index (from32 size (index (index Q (lit (src₂ ′f))) (var 4F))) (var 0F))
]′ src₂
vec-op₂ : Function (bits (toℕ esize) ∷ bits (toℕ esize) ∷ []) (bits (toℕ esize)) → Procedure []
vec-op₂ op = vec-op₂′ (index (var 3F) (var 1F) ≔ call op (index (var 2F) (var 1F) ∷ var 0F ∷ []))
vadd : Instr.VAdd → Procedure []
vadd d = vec-op₂ d (skip ∙return sliceⁱ 0 (uint (var 0F) + uint (var 1F)))
vsub : Instr.VSub → Procedure []
vsub d = vec-op₂ d (skip ∙return sliceⁱ 0 (uint (var 0F) - uint (var 1F)))
vhsub : Instr.VHSub → Procedure []
vhsub d = vec-op₂ op₂ (skip ∙return sliceⁱ 1 (toInt (var 0F) - toInt (var 1F)))
where open Instr.VHSub d; toInt = λ i → call Int (i ∷ lit (unsigned ′b) ∷ [])
vmul : Instr.VMul → Procedure []
vmul d = vec-op₂ d (skip ∙return sliceⁱ 0 (sint (var 0F) * sint (var 1F)))
vmulh : Instr.VMulH → Procedure []
vmulh d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0F) * toInt (var 1F)))
where
open Instr.VMulH d; toInt = λ i → call Int (i ∷ lit (unsigned ′b) ∷ [])
vrmulh : Instr.VRMulH → Procedure []
vrmulh d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0F) * toInt (var 1F) + lit (1 ′i) << toℕ esize-1))
where
open Instr.VRMulH d; toInt = λ i → call Int (i ∷ lit (unsigned ′b) ∷ [])
vmla : Instr.VMlA → Procedure []
vmla d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0F) * element₂ + toInt (var 1F)))
where
open Instr.VMlA d
op₂ = record { size = size ; dest = acc ; src₁ = src₁ ; src₂ = inj₂ acc }
toInt = λ i → call Int (i ∷ lit (unsigned ′b) ∷ [])
element₂ = toInt (index (from32 size (index R (lit (src₂ ′f)))) (lit (zero ′f)))
private
vqr?dmulh : Instr.VQDMulH → Function (int ∷ int ∷ []) int → Procedure []
vqr?dmulh d f = vec-op₂′ d (
-- 0:op₂ 1:e 2:op₁ 3:result 4:elmtMask 5:curBeat
declare (call f (sint (index (var 2F) (var 1F)) ∷ sint (var 0F) ∷ [])) (
declare (lit (false ′b)) (
-- 0:sat 1:value 2:op₂ 3:e 4:op₁ 5:result 6:elmtMask 7:curBeat
tup (index (var 5F) (var 3F) ∷ var 0F ∷ []) ≔ call (SignedSatQ (toℕ esize-1)) (var 1F ∷ []) ∙
if var 0F && hasBit (var 6F) (fin e*esize>>3 (tup ((var 3F) ∷ [])))
then
FPSCR-QC ≔ lit (true ′x)
else skip)))
where
open Instr.VecOp₂ d
e*esize>>3 : All Fin (toℕ elements ∷ []) → Fin 4
e*esize>>3 (x ∷ []) = helper size x
where
helper : ∀ size → Fin′ (Instr.Size.elements size) → Fin 4
helper Instr.8bit i = Fin.combine i (zero {0})
helper Instr.16bit i = Fin.combine i (zero {1})
helper Instr.32bit i = Fin.combine i zero
vqdmulh : Instr.VQDMulH → Procedure []
vqdmulh d = vqr?dmulh d (skip ∙return lit (2 ′i) * var 0F * var 1F >> toℕ esize)
where open Instr.VecOp₂ d using (esize)
vqrdmulh : Instr.VQRDMulH → Procedure []
vqrdmulh d = vqr?dmulh d (skip ∙return lit (2 ′i) * var 0F * var 1F + lit (1 ′i) << toℕ esize-1 >> toℕ esize)
where open Instr.VecOp₂ d using (esize; esize-1)
|