diff options
author | Ohad Kammar <ohad.kammar@ed.ac.uk> | 2022-08-08 17:29:03 +0100 |
---|---|---|
committer | Ohad Kammar <ohad.kammar@ed.ac.uk> | 2022-08-08 17:29:03 +0100 |
commit | 63e894b39a82e5a8b1edd06f1e03e6bfc5aa8c81 (patch) | |
tree | 8eef9a4268a0b703318e8eb6d7e843caa72c2dc4 | |
parent | 4032974f05f80cbab61a26f4b30ce57ec2e43b3b (diff) |
Snapshot, will continue later
-rw-r--r-- | doc/Tutorial.html | 15 | ||||
-rw-r--r-- | doc/Tutorial.md | 103 | ||||
-rw-r--r-- | doc/setoid-doc.ipkg | 1 | ||||
-rw-r--r-- | doc/sources/Tutorial.md | 67 |
4 files changed, 161 insertions, 25 deletions
diff --git a/doc/Tutorial.html b/doc/Tutorial.html index e10bee7..23a7183 100644 --- a/doc/Tutorial.html +++ b/doc/Tutorial.html @@ -66,14 +66,14 @@ <p><code class="IdrisCode"> <span class="IdrisKeyword">record</span> <span class="IdrisType">Equivalence</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">A</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">Type</span><span class="IdrisKeyword">)</span> <span class="IdrisKeyword">where</span><br /> constructor <span class="IdrisData">MkEquivalence</span><br /> <span class="IdrisKeyword">0</span> <span class="IdrisFunction">relation</span><span class="IdrisKeyword">:</span> <span class="IdrisFunction">Rel</span> <span class="IdrisBound">A</span><br /> <span class="IdrisFunction">reflexive</span> <span class="IdrisKeyword">:</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">x</span> <span class="IdrisKeyword">:</span> <span class="IdrisBound">A</span><span class="IdrisKeyword">)</span> <span class="IdrisKeyword">-></span> <span class="IdrisBound">relation</span> <span class="IdrisBound">x</span> <span class="IdrisBound">x</span><br /> <span class="IdrisFunction">symmetric</span> <span class="IdrisKeyword">:</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span> <span class="IdrisBound">y</span> <span class="IdrisKeyword">:</span> <span class="IdrisBound">A</span><span class="IdrisKeyword">)</span> <span class="IdrisKeyword">-></span> <span class="IdrisBound">relation</span> <span class="IdrisBound">x</span> <span class="IdrisBound">y</span> <span class="IdrisKeyword">-></span> <span class="IdrisBound">relation</span> <span class="IdrisBound">y</span> <span class="IdrisBound">x</span><br /> <span class="IdrisFunction">transitive</span><span class="IdrisKeyword">:</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span> <span class="IdrisBound">y</span><span class="IdrisKeyword">,</span> <span class="IdrisBound">z</span> <span class="IdrisKeyword">:</span> <span class="IdrisBound">A</span><span class="IdrisKeyword">)</span> <span class="IdrisKeyword">-></span> <span class="IdrisBound">relation</span> <span class="IdrisBound">x</span> <span class="IdrisBound">y</span> <span class="IdrisKeyword">-></span> <span class="IdrisBound">relation</span> <span class="IdrisBound">y</span> <span class="IdrisBound">z</span><br /> <span class="IdrisKeyword">-></span> <span class="IdrisBound">relation</span> <span class="IdrisBound">x</span> <span class="IdrisBound">z</span><br /> </code></p> <p>We equip the built-in relation <code>Equal</code> with the structure of an equivalence relation, using the constructor <code>Refl</code> and the stdlib functions <code>sym</code>, and <code>trans</code>: <code class="IdrisCode"> <span class="IdrisFunction">EqualityEquivalence</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">Equivalence</span> <span class="IdrisBound">a</span><br /> <span class="IdrisFunction">EqualityEquivalence</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">MkEquivalence</span><br /> <span class="IdrisKeyword">{</span> <span class="IdrisBound">relation</span> <span class="IdrisKeyword">=</span> <span class="IdrisFunction">(===)</span><br /> <span class="IdrisKeyword">,</span> <span class="IdrisBound">reflexive</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword"></span><span class="IdrisBound">x</span> <span class="IdrisKeyword">=></span> <span class="IdrisData">Refl</span><br /> <span class="IdrisKeyword">,</span> <span class="IdrisBound">symmetric</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword"></span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">x_eq_y</span> <span class="IdrisKeyword">=></span> <span class="IdrisFunction">sym</span> <span class="IdrisBound">x_eq_y</span><br /> <span class="IdrisKeyword">,</span> <span class="IdrisBound">transitive</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword"></span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">z</span><span class="IdrisKeyword">,</span><span class="IdrisBound">x_eq_y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y_eq_z</span> <span class="IdrisKeyword">=></span> <span class="IdrisFunction">trans</span> <span class="IdrisBound">x_eq_y</span> <span class="IdrisBound">y_eq_z</span><br /> <span class="IdrisKeyword">}</span><br /> </code></p> <p>We’ll use the following relation on pairs of natural numbers as a running example. We can represent an integer as the difference between a pair of natural numbers: <code class="IdrisCode"> <span class="IdrisKeyword">infix</span> <span class="IdrisKeyword">8</span> .-.<br /> <br /> <span class="IdrisKeyword">record</span> <span class="IdrisType">INT</span> <span class="IdrisKeyword">where</span><br /> constructor <span class="IdrisData">(.-.)</span><br /> <span class="IdrisFunction">pos</span><span class="IdrisKeyword">,</span> <span class="IdrisFunction">neg</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">Nat</span><br /> <br /> <span class="IdrisKeyword">record</span> <span class="IdrisType">SameDiff</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span> <span class="IdrisBound">y</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">INT</span><span class="IdrisKeyword">)</span> <span class="IdrisKeyword">where</span><br /> constructor <span class="IdrisData">Check</span><br /> <span class="IdrisFunction">same</span> <span class="IdrisKeyword">:</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">x</span><span class="IdrisFunction">.pos + </span><span class="IdrisBound">y</span><span class="IdrisFunction">.neg === </span><span class="IdrisBound">y</span><span class="IdrisFunction">.pos + </span><span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span><span class="IdrisKeyword">)</span><br /> </code> The <code>SameDiff x y</code> relation is equivalent to mathematical equation that states that the difference between the positive and negative parts is identical: <br /><span class="math display"><em>x</em><sub><em>p</em><em>o</em><em>s</em></sub> − <em>x</em><sub><em>n</em><em>e</em><em>g</em></sub> = <em>y</em><sub><em>p</em><em>o</em><em>s</em></sub> − <em>y</em><sub><em>n</em><em>e</em><em>g</em></sub></span><br /> But, unlike the last equation which requires us to define integers and subtraction, its equivalent <code>(.same)</code> is expressed using only addition, and so addition on <code>Nat</code> is enough.</p> -<p>The relation <code>SameDiff</code> is an equivalence relation. The proofs are straightforward, and a good opportunity to practice Idris’s equational reasoning combinators from <code>Syntax.PreorderReasoning</code>: <code class="IdrisCode"> <span class="IdrisFunction">SameDiffEquivalence</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">Equivalence</span> <span class="IdrisType">INT</span><br /> <span class="IdrisFunction">SameDiffEquivalence</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">MkEquivalence</span><br /> <span class="IdrisKeyword">{</span> <span class="IdrisBound">relation</span> <span class="IdrisKeyword">=</span> <span class="IdrisType">SameDiff</span><br /> <span class="IdrisKeyword">,</span> <span class="IdrisBound">reflexive</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword"></span><span class="IdrisBound">x</span> <span class="IdrisKeyword">=></span> <span class="IdrisData">Check</span> <span class="math inline">$&nbsp;<span class="IdrisFunction">Calc</span>&nbsp;$</span><br /> <span class="IdrisData">|~</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span><br /> <span class="IdrisData">~~</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span> <span class="IdrisData">…</span><span class="IdrisKeyword">(</span><span class="IdrisData">Refl</span><span class="IdrisKeyword">)</span><br /> </code> This equational proof represents the single-step equational proof:</p> -<p>"Calculate:</p> +<p>The relation <code>SameDiff</code> is an equivalence relation. The proofs are straightforward, and a good opportunity to practice Idris’s equational reasoning combinators from <code>Syntax.PreorderReasoning</code>: <code class="IdrisCode"> <span class="IdrisFunction">SameDiffEquivalence</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">Equivalence</span> <span class="IdrisType">INT</span><br /> <span class="IdrisFunction">SameDiffEquivalence</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">MkEquivalence</span><br /> <span class="IdrisKeyword">{</span> <span class="IdrisBound">relation</span> <span class="IdrisKeyword">=</span> <span class="IdrisType">SameDiff</span><br /> <span class="IdrisKeyword">,</span> <span class="IdrisBound">reflexive</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword"></span><span class="IdrisBound">x</span> <span class="IdrisKeyword">=></span> <span class="IdrisData">Check</span> <span class="math inline">$&nbsp;<span class="IdrisFunction">Calc</span>&nbsp;$</span><br /> <span class="IdrisData">|~</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span><br /> <span class="IdrisData">~~</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span> <span class="IdrisData">…</span><span class="IdrisKeyword">(</span><span class="IdrisData">Refl</span><span class="IdrisKeyword">)</span><br /> </code> This equational proof represents the single-step equational proof:</p> +<p>"Calculate:</p> <ol type="1"> <li><span class="math inline"><em>x</em><sub><em>p</em><em>o</em><em>s</em></sub> + <em>x</em><sub><em>n</em><em>e</em><em>g</em></sub></span></li> -<li><span class="math inline"> = <em>x</em><sub><em>p</em><em>o</em><em>s</em></sub> + <em>x</em><sub><em>n</em><em>e</em><em>g</em></sub></span> (by reflexivity)"</li> +<li><span class="math inline"> = <em>x</em><sub><em>p</em><em>o</em><em>s</em></sub> + <em>x</em><sub><em>n</em><em>e</em><em>g</em></sub></span> (by reflexivity)"</li> </ol> <p>The mnemonic behind the ASCII-art is that the first step in the proof starts with a logical-judgement symbol <span class="math inline">⊢</span>, each step continues with an equality sign <span class="math inline">=</span>, and justified by a thought bubble <code>(...)</code>.</p> -<p><code class="IdrisCode"> <span class="IdrisKeyword">,</span> <span class="IdrisBound">symmetric</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword"></span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">x_eq_y</span> <span class="IdrisKeyword">=></span> <span class="IdrisData">Check</span> <span class="math inline">$&nbsp;<span class="IdrisFunction">Calc</span>&nbsp;$</span><br /> <span class="IdrisData">|~</span> <span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span><br /> <span class="IdrisData">~~</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">y</span><span class="IdrisFunction">.neg</span> <span class="IdrisFunction">..<</span><span class="IdrisKeyword">(</span><span class="IdrisBound">x_eq_y</span><span class="IdrisFunction">.same</span><span class="IdrisKeyword">)</span><br /> </code> In this proof, we were given the proof <code>x_eq_y.same : x.pos + y.neg = y.pos + x.neg</code> and so we appealed to the symmetric equation. The mnemonic here is that the last bubble in the thought bubble <code>(...)</code> is replace with a left-pointing arrow, reversing the reasoning step. <code class="IdrisCode"> <span class="IdrisKeyword">,</span> <span class="IdrisBound">transitive</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword"></span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">z</span><span class="IdrisKeyword">,</span><span class="IdrisBound">x_eq_y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y_eq_z</span> <span class="IdrisKeyword">=></span> <span class="IdrisData">Check</span> <span class="math inline">$&nbsp;<span class="IdrisFunction">plusRightCancel</span>&nbsp;<span class="IdrisKeyword">\_</span>&nbsp;<span class="IdrisKeyword">\_</span>&nbsp;<span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;$</span> <span class="IdrisFunction">Calc</span> <span class="math inline">$<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="IdrisData">|~</span>&nbsp;<span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span>&nbsp;<span class="IdrisFunction">+</span>&nbsp;<span class="IdrisBound">z</span><span class="IdrisFunction">.neg</span>&nbsp;<span class="IdrisFunction">+</span>&nbsp;<span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="IdrisData">~~</span>&nbsp;<span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span>&nbsp;<span class="IdrisFunction">+</span>&nbsp;<span class="IdrisKeyword">(</span><span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span>&nbsp;<span class="IdrisFunction">+</span>&nbsp;<span class="IdrisBound">z</span><span class="IdrisFunction">.neg</span><span class="IdrisKeyword">)</span>&nbsp;<span class="IdrisData">...</span><span class="IdrisKeyword">(</span><span class="IdrisFunction">solve</span>&nbsp;<span class="IdrisData">3</span>&nbsp;<span class="IdrisFunction">Monoid.Commutative.Free.Free</span><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="IdrisKeyword">{</span><span class="IdrisBound">a</span>&nbsp;<span class="IdrisKeyword">=</span>&nbsp;<span class="IdrisFunction">Nat.Additive</span><span class="IdrisKeyword">}</span>&nbsp;$</span><br /> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">0</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">1</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">2</span><br /> <span class="IdrisFunction">=-=</span> <span class="IdrisFunction">X</span> <span class="IdrisData">0</span> <span class="IdrisFunction">.+.</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">2</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">1</span><span class="IdrisKeyword">))</span><br /> <span class="IdrisData">~~</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">z</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">y</span><span class="IdrisFunction">.neg</span><span class="IdrisKeyword">)</span> <span class="IdrisData">…</span><span class="IdrisKeyword">(</span><span class="IdrisFunction">cong</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span><span class="IdrisKeyword">)</span> <span class="math inline">$&nbsp;<span class="IdrisBound">y\_eq\_z</span><span class="IdrisFunction">.same</span><span class="IdrisKeyword">)</span><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="IdrisData">~~</span>&nbsp;<span class="IdrisKeyword">(</span><span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span>&nbsp;<span class="IdrisFunction">+</span>&nbsp;<span class="IdrisBound">y</span><span class="IdrisFunction">.neg</span><span class="IdrisKeyword">)</span>&nbsp;<span class="IdrisFunction">+</span>&nbsp;<span class="IdrisBound">z</span><span class="IdrisFunction">.pos</span>&nbsp;<span class="IdrisData">...</span><span class="IdrisKeyword">(</span><span class="IdrisFunction">solve</span>&nbsp;<span class="IdrisData">3</span>&nbsp;<span class="IdrisFunction">Monoid.Commutative.Free.Free</span><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="IdrisKeyword">{</span><span class="IdrisBound">a</span>&nbsp;<span class="IdrisKeyword">=</span>&nbsp;<span class="IdrisFunction">Nat.Additive</span><span class="IdrisKeyword">}</span>&nbsp;$</span><br /> <span class="IdrisFunction">X</span> <span class="IdrisData">0</span> <span class="IdrisFunction">.+.</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">1</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">2</span><span class="IdrisKeyword">)</span><br /> <span class="IdrisFunction">=-=</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">0</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">2</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">1</span><span class="IdrisKeyword">)</span><br /> <span class="IdrisData">~~</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">z</span><span class="IdrisFunction">.pos</span> <span class="IdrisData">…</span><span class="IdrisKeyword">(</span><span class="IdrisFunction">cong</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">+</span> <span class="IdrisBound">z</span><span class="IdrisFunction">.pos</span><span class="IdrisKeyword">)</span> ?h2<span class="IdrisKeyword">)</span><br /> <span class="IdrisData">~~</span> <span class="IdrisBound">z</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span> <span class="IdrisData">…</span><span class="IdrisKeyword">(</span><span class="IdrisFunction">solve</span> <span class="IdrisData">3</span> <span class="IdrisFunction">Monoid.Commutative.Free.Free</span><br /> <span class="IdrisKeyword">{</span><span class="IdrisBound">a</span> <span class="IdrisKeyword">=</span> <span class="IdrisFunction">Nat.Additive</span><span class="IdrisKeyword">}</span> $<br /> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">0</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">1</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">2</span><br /> <span class="IdrisFunction">=-=</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">2</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">1</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">0</span><span class="IdrisKeyword">)</span><br /> <span class="IdrisKeyword">}</span><br /> </code> This proof is a lot more involved:</p> +<p><code class="IdrisCode"> <span class="IdrisKeyword">,</span> <span class="IdrisBound">symmetric</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword"></span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">x_eq_y</span> <span class="IdrisKeyword">=></span> <span class="IdrisData">Check</span> <span class="math inline">$&nbsp;<span class="IdrisFunction">Calc</span>&nbsp;$</span><br /> <span class="IdrisData">|~</span> <span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span><br /> <span class="IdrisData">~~</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">y</span><span class="IdrisFunction">.neg</span> <span class="IdrisFunction">..<</span><span class="IdrisKeyword">(</span><span class="IdrisBound">x_eq_y</span><span class="IdrisFunction">.same</span><span class="IdrisKeyword">)</span><br /> </code> In this proof, we were given the proof <code>x_eq_y.same : x.pos + y.neg = y.pos + x.neg</code> and so we appealed to the symmetric equation. The mnemonic here is that the last bubble in the thought bubble <code>(...)</code> is replace with a left-pointing arrow, reversing the reasoning step. <code class="IdrisCode"> <span class="IdrisKeyword">,</span> <span class="IdrisBound">transitive</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword"></span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">z</span><span class="IdrisKeyword">,</span><span class="IdrisBound">x_eq_y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y_eq_z</span> <span class="IdrisKeyword">=></span> <span class="IdrisData">Check</span> <span class="math inline">$&nbsp;<span class="IdrisFunction">plusRightCancel</span>&nbsp;<span class="IdrisKeyword">\_</span>&nbsp;<span class="IdrisKeyword">\_</span>&nbsp;<span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;$</span> <span class="IdrisFunction">Calc</span> <span class="math inline">$<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="IdrisData">|~</span>&nbsp;<span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span>&nbsp;<span class="IdrisFunction">+</span>&nbsp;<span class="IdrisBound">z</span><span class="IdrisFunction">.neg</span>&nbsp;<span class="IdrisFunction">+</span>&nbsp;<span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="IdrisData">~~</span>&nbsp;<span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span>&nbsp;<span class="IdrisFunction">+</span>&nbsp;<span class="IdrisKeyword">(</span><span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span>&nbsp;<span class="IdrisFunction">+</span>&nbsp;<span class="IdrisBound">z</span><span class="IdrisFunction">.neg</span><span class="IdrisKeyword">)</span>&nbsp;<span class="IdrisData">...</span><span class="IdrisKeyword">(</span><span class="IdrisFunction">solve</span>&nbsp;<span class="IdrisData">3</span>&nbsp;<span class="IdrisFunction">Monoid.Commutative.Free.Free</span><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="IdrisKeyword">{</span><span class="IdrisBound">a</span>&nbsp;<span class="IdrisKeyword">=</span>&nbsp;<span class="IdrisFunction">Nat.Additive</span><span class="IdrisKeyword">}</span>&nbsp;$</span><br /> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">0</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">1</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">2</span><br /> <span class="IdrisFunction">=-=</span> <span class="IdrisFunction">X</span> <span class="IdrisData">0</span> <span class="IdrisFunction">.+.</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">2</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">1</span><span class="IdrisKeyword">))</span><br /> <span class="IdrisData">~~</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">z</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">y</span><span class="IdrisFunction">.neg</span><span class="IdrisKeyword">)</span> <span class="IdrisData">…</span><span class="IdrisKeyword">(</span><span class="IdrisFunction">cong</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span><span class="IdrisKeyword">)</span> <span class="math inline">$&nbsp;<span class="IdrisBound">y\_eq\_z</span><span class="IdrisFunction">.same</span><span class="IdrisKeyword">)</span><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="IdrisData">~~</span>&nbsp;<span class="IdrisKeyword">(</span><span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span>&nbsp;<span class="IdrisFunction">+</span>&nbsp;<span class="IdrisBound">y</span><span class="IdrisFunction">.neg</span><span class="IdrisKeyword">)</span>&nbsp;<span class="IdrisFunction">+</span>&nbsp;<span class="IdrisBound">z</span><span class="IdrisFunction">.pos</span>&nbsp;<span class="IdrisData">...</span><span class="IdrisKeyword">(</span><span class="IdrisFunction">solve</span>&nbsp;<span class="IdrisData">3</span>&nbsp;<span class="IdrisFunction">Monoid.Commutative.Free.Free</span><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="IdrisKeyword">{</span><span class="IdrisBound">a</span>&nbsp;<span class="IdrisKeyword">=</span>&nbsp;<span class="IdrisFunction">Nat.Additive</span><span class="IdrisKeyword">}</span>&nbsp;$</span><br /> <span class="IdrisFunction">X</span> <span class="IdrisData">0</span> <span class="IdrisFunction">.+.</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">1</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">2</span><span class="IdrisKeyword">)</span><br /> <span class="IdrisFunction">=-=</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">0</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">2</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">1</span><span class="IdrisKeyword">)</span><br /> <span class="IdrisData">~~</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">z</span><span class="IdrisFunction">.pos</span> <span class="IdrisData">…</span><span class="IdrisKeyword">(</span><span class="IdrisFunction">cong</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">+</span> <span class="IdrisBound">z</span><span class="IdrisFunction">.pos</span><span class="IdrisKeyword">)</span> ?h2<span class="IdrisKeyword">)</span><br /> <span class="IdrisData">~~</span> <span class="IdrisBound">z</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span> <span class="IdrisData">…</span><span class="IdrisKeyword">(</span><span class="IdrisFunction">solve</span> <span class="IdrisData">3</span> <span class="IdrisFunction">Monoid.Commutative.Free.Free</span><br /> <span class="IdrisKeyword">{</span><span class="IdrisBound">a</span> <span class="IdrisKeyword">=</span> <span class="IdrisFunction">Nat.Additive</span><span class="IdrisKeyword">}</span> $<br /> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">0</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">1</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">2</span><br /> <span class="IdrisFunction">=-=</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">2</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">1</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">0</span><span class="IdrisKeyword">)</span><br /> <span class="IdrisKeyword">}</span><br /> </code> This proof is a lot more involved:</p> <ol type="1"> <li>We appeal to the cancellation property of addition: <span class="math inline"><em>a</em> + <em>c</em> = <em>b</em> + <em>c</em> ⇒ <em>a</em> = <em>b</em></span></li> </ol> @@ -83,8 +83,9 @@ </ol> <p>Here we use the idris library <a href="http://www.github.com/frex-project/idris-frex"><code>Frex</code></a> that can perform such routine rearrangements for common algebraic structures. In this case, we use the commutative monoid simplifier from <code>Frex</code>. If you want to read more about <code>Frex</code>, check the <a href="https://www.denotational.co.uk/drafts/allais-brady-corbyn-kammar-yallop-frex-dependently-typed-algebraic-simplification.pdf">paper</a> out.</p> <p>Idris’s <code>Control.Relation</code> defines interfaces for properties like reflexivity and transitivity. While the setoid package doesn’t use them, we’ll use them in a few examples.</p> -<p>The <code>Overlap</code> relation from Examples 1 and 2 is symmetric: <code class="IdrisCode"> Symm<span class="IdrisKeyword">e</span>tric (List a) Overlap where<br /> symmetric xs_overlaps_ys = Overlapping<br /> { common = xs_overlaps_ys.common<br /> , lhsPos = xs_overlaps_ys.rhsPos<br /> , rhsPos = xs_overlaps_ys.lhsPos<br /> }<br /> </code> However, <code>Overlap</code> is neither reflexive nor transitive:</p> +<p>The <code>Overlap</code> relation from Examples 1 and 2 is symmetric: <code class="IdrisCode"> <span class="IdrisType">Symmetric</span> <span class="IdrisKeyword">(</span><span class="IdrisType">List</span> <span class="IdrisBound">a</span><span class="IdrisKeyword">)</span> <span class="IdrisType">Overlap</span> <span class="IdrisKeyword">where</span><br /> <span class="IdrisFunction">symmetric</span> <span class="IdrisBound">xs_overlaps_ys</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">Overlapping</span><br /> <span class="IdrisKeyword">{</span> <span class="IdrisBound">common</span> <span class="IdrisKeyword">=</span> <span class="IdrisBound">xs_overlaps_ys</span><span class="IdrisFunction">.common</span><br /> <span class="IdrisKeyword">,</span> <span class="IdrisBound">lhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisBound">xs_overlaps_ys</span><span class="IdrisFunction">.rhsPos</span><br /> <span class="IdrisKeyword">,</span> <span class="IdrisBound">rhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisBound">xs_overlaps_ys</span><span class="IdrisFunction">.lhsPos</span><br /> <span class="IdrisKeyword">}</span><br /> </code> However, <code>Overlap</code> is neither reflexive nor transitive:</p> <ul> -<li><p>The empty list doesn’t overlap with itself: <code class="IdrisCode"> Ex3 : Not (Overlap [] [])<br /> Ex3 nil_overlaps_nil = case nil_overlaps_nil.lhsPos of<br /> <span class="IdrisFunction"> _</span> <span class="IdrisKeyword">i</span>m<span class="IdrisKeyword">p</span>o<span class="IdrisType">ssible</span><br /> </code></p></li> -<li><p>Two lists may overlap with a middle list, but on different elements. For example: <code class="IdrisCode"> Ex<span class="IdrisData">4</span> <span class="IdrisData">: ( Overlap</span> <span class="IdrisData">[</span>1<span class="IdrisKeyword">]</span><span class="IdrisData"> [1,2</span>]<br /> <span class="IdrisData"> </span> <span class="IdrisKeyword"> </span> <span class="IdrisBound">, Overlap [1,2] </span>[<span class="IdrisKeyword">2]</span><br /> <span class="IdrisData"> , No</span>t<span class="IdrisKeyword"> </span>(<span class="IdrisKeyword">Overlap [1</span>] [2]))<br /> Ex<span class="IdrisKeyword">4</span> =<br /> ( Overlapping 1 Here Here<br /> , Overlapping 2 (There Here) Here<br /> , &nbsp;one_overlaps_two => case one_overlaps_two.lhsPos of<br /> There _ impossible<br /> )<br /> </code> The outer lists agree on <code>1</code> and <code>2</code>, respectively, but they can’t overlap on on the first element of either, which exhausts all possibilities of overlap.</p></li> +<li><p>The empty list doesn’t overlap with itself: <code class="IdrisCode"> <span class="IdrisFunction">Ex3</span> <span class="IdrisKeyword">:</span> <span class="IdrisFunction">Not</span> <span class="IdrisKeyword">(</span><span class="IdrisType">Overlap</span> <span class="IdrisData">[]</span> <span class="IdrisData">[]</span><span class="IdrisKeyword">)</span><br /> <span class="IdrisFunction">Ex3</span> <span class="IdrisBound">nil_overlaps_nil</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword">case</span> <span class="IdrisBound">nil_overlaps_nil</span><span class="IdrisFunction">.lhsPos</span> <span class="IdrisKeyword">of</span><br /> <span class="IdrisKeyword">_</span> <span class="IdrisKeyword">impossible</span><br /> </code></p></li> +<li><p>Two lists may overlap with a middle list, but on different elements. For example: <code class="IdrisCode"> <span class="IdrisFunction">Ex4</span> <span class="IdrisKeyword">:</span> <span class="IdrisKeyword">(</span> <span class="IdrisType">Overlap</span> <span class="IdrisData">[1]</span> <span class="IdrisData">[1,2]</span><br /> <span class="IdrisType">,</span> <span class="IdrisType">Overlap</span> <span class="IdrisData">[1,2]</span> <span class="IdrisData">[2]</span><br /> <span class="IdrisType">,</span> <span class="IdrisFunction">Not</span> <span class="IdrisKeyword">(</span><span class="IdrisType">Overlap</span> <span class="IdrisData">[1]</span> <span class="IdrisData">[2]</span><span class="IdrisKeyword">))</span><br /> <span class="IdrisFunction">Ex4</span> <span class="IdrisKeyword">=</span><br /> <span class="IdrisKeyword">(</span> <span class="IdrisData">Overlapping</span> <span class="IdrisData">1</span> <span class="IdrisData">Here</span> <span class="IdrisData">Here</span><br /> <span class="IdrisData">,</span> <span class="IdrisData">Overlapping</span> <span class="IdrisData">2</span> <span class="IdrisKeyword">(</span><span class="IdrisData">There</span> <span class="IdrisData">Here</span><span class="IdrisKeyword">)</span> <span class="IdrisData">Here</span><br /> <span class="IdrisData">,</span> <span class="IdrisKeyword"></span> <span class="IdrisBound">one_overlaps_two</span> <span class="IdrisKeyword">=></span> <span class="IdrisKeyword">case</span> <span class="IdrisBound">one_overlaps_two</span><span class="IdrisFunction">.lhsPos</span> <span class="IdrisKeyword">of</span><br /> <span class="IdrisData">There</span> <span class="IdrisKeyword">_</span> <span class="IdrisKeyword">impossible</span><br /> <span class="IdrisKeyword">)</span><br /> </code> The outer lists agree on <code>1</code> and <code>2</code>, respectively, but they can’t overlap on on the first element of either, which exhausts all possibilities of overlap.</p></li> </ul> +<p><code class="IdrisCode"> <span class="IdrisBound">-</span>-<span class="IdrisFunction"> TO</span>D<span class="IdrisBound">O</span>:<span class="IdrisKeyword"> </span>c<span class="IdrisKeyword">l</span><span class="IdrisBound">e</span><span class="IdrisFunction">an t</span>h<span class="IdrisFunction">i</span>s<span class="IdrisBound"> </span><span class="IdrisFunction">up</span><br /> (.+.) : (x, y : INT) -> INT<br /> <span class="IdrisFunction">x .+.</span> <span class="IdrisKeyword">y</span> <span class="IdrisKeyword">=</span><span class="IdrisBound"> </span><span class="IdrisKeyword">(</span>x<span class="IdrisBound">.</span>p<span class="IdrisKeyword">o</span>s<span class="IdrisType"> + </span><span class="IdrisKeyword">y</span>.<span class="IdrisKeyword">po</span>s<span class="IdrisType">) .</span>-. (x.neg + y.neg)<br /> <br /> (.*.) : (x, y : INT) -> INT<br /> <span class="IdrisFunction">x</span><span class="IdrisKeyword"> </span>.<span class="IdrisFunction">*</span>.<span class="IdrisKeyword"> </span>y<span class="IdrisType"> = </span>(x.pos * y.pos + x.neg * y.neg) .-. (x.pos * y.neg + x.neg * y.pos)<br /> <br /> <span class="IdrisFunction">O</span>,<span class="IdrisKeyword"> </span>I<span class="IdrisData"> </span>:<span class="IdrisData"> IN</span>T<br /> <span class="IdrisFunction">O = 0 .-. 0</span><br /> <span class="IdrisFunction">I = 1 .-. 0</span><br /> plusIntZeroLftNeutral : (x : INT) -> O .+. x <code>SameDiff</code> x<br /> <span class="IdrisFunction">plusIntZeroLftNeutral</span> <span class="IdrisKeyword">x</span> <span class="IdrisKeyword">=</span><span class="IdrisBound"> </span>C<span class="IdrisKeyword">h</span>e<span class="IdrisType">ck </span><span class="IdrisKeyword">R</span>e<span class="IdrisKeyword">fl</span><br /> <br /> plusIntZeroRgtNeutral : (x : INT) -> <span class="IdrisKeyword">x</span><span class="IdrisBound"> </span>.<span class="IdrisKeyword">+</span>.<span class="IdrisFunction"> O <code>SameDiff</span><span class="IdrisKeyword"></code></span> x<br /> plusIntZeroRgtNeutral x = Check (solv<span class="IdrisKeyword">e</span><span class="IdrisFunction"> </span>2<span class="IdrisData"> </span>M<span class="IdrisFunction">ono</span>i<span class="IdrisFunction">d.</span><span class="IdrisKeyword">C</span>o<span class="IdrisFunction">mmu</span>t<span class="IdrisFunction">a</span>t<span class="IdrisData">i</span>ve.Free.Free<br /> <span class="IdrisFunction"> </span> <span class="IdrisFunction">{</span>a<span class="IdrisData"> </span>=<span class="IdrisFunction"> Na</span>t<span class="IdrisKeyword">.</span><span class="IdrisFunction">A</span>d<span class="IdrisData">d</span>i<span class="IdrisFunction">tiv</span>e<span class="IdrisFunction">} </span><span class="IdrisKeyword"><span class="math inline">$</span><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(X&nbsp;0&nbsp;.+.&nbsp;O1)&nbsp;.+.&nbsp;X&nbsp;1<br /> <span class="IdrisFunction">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</span>&nbsp;<span class="IdrisKeyword">&nbsp;</span>&nbsp;<span class="IdrisKeyword">&nbsp;</span><span class="IdrisBound">&nbsp;</span><span class="IdrisKeyword">&nbsp;</span><span class="IdrisBound">&nbsp;</span><span class="IdrisKeyword">&nbsp;</span><span class="IdrisBound">&nbsp;</span>&nbsp;<span class="IdrisKeyword">&nbsp;</span>&nbsp;<span class="IdrisType">&nbsp;&nbsp;&nbsp;</span><span class="IdrisKeyword">=</span>-<span class="IdrisKeyword">=&nbsp;</span>X<span class="IdrisBound">&nbsp;</span>0<span class="IdrisFunction">&nbsp;.+</span>.<span class="IdrisKeyword">&nbsp;</span><span class="IdrisBound">(</span>X<span class="IdrisFunction">&nbsp;1&nbsp;</span>.<span class="IdrisBound">+</span><span class="IdrisKeyword">.</span>&nbsp;<span class="IdrisType">O1))</span><br /> <br /> plusInrAssociative&nbsp;:&nbsp;(x,y,z&nbsp;:&nbsp;INT)&nbsp;-&gt;<span class="IdrisKeyword">&nbsp;</span><span class="IdrisBound">x</span>&nbsp;<span class="IdrisKeyword">.</span>+<span class="IdrisFunction">.&nbsp;(y&nbsp;.+.&nbsp;z)&nbsp;</span><span class="IdrisKeyword">`</span>SameDiff`&nbsp;(x&nbsp;.+.&nbsp;y)&nbsp;.+.&nbsp;z<br /> plusInrAssociative&nbsp;x&nbsp;y&nbsp;z&nbsp;=&nbsp;Check&nbsp;$</span><span class="IdrisKeyword"> </span><span class="IdrisFunction">(</span>s<span class="IdrisData">o</span>l<span class="IdrisFunction">ve </span>6<span class="IdrisKeyword"> </span><span class="IdrisFunction">M</span>o<span class="IdrisData">n</span>o<span class="IdrisFunction">id.</span>C<span class="IdrisFunction">o</span>m<span class="IdrisData">m</span><span class="IdrisKeyword">ut</span>a<span class="IdrisFunction">tiv</span>e<span class="IdrisKeyword">.F</span><span class="IdrisFunction">r</span>e<span class="IdrisData">e</span>.<span class="IdrisFunction">Fre</span>e<br /> <span class="IdrisFunction"> </span>{<span class="IdrisKeyword">a</span><span class="IdrisFunction"> </span>=<span class="IdrisData"> </span>N<span class="IdrisFunction">at.</span>A<span class="IdrisFunction">d</span>d<span class="IdrisData">i</span>t<span class="IdrisFunction">ive</span>}<span class="IdrisFunction"> </span>$<br /> (X 0 .+. (X 1 .+. X 2)) .+. ((X 3 .+. X 4) .+. X 5)<br /> <span class="IdrisKeyword"> </span> <span class="IdrisType"> </span> <span class="IdrisKeyword"> </span> <span class="IdrisType"> </span> <span class="IdrisKeyword"> </span> =-= (X 0 .+. X 1 .+. X 2) .+. (X 3 .+. (X 4 .+. X 5)))<br /> <br /> da<span class="IdrisData">ta IN</span>T<span class="IdrisKeyword">‘</span> <span class="IdrisType">: T</span>y<span class="IdrisKeyword">pe</span> <span class="IdrisType">wher</span>e<br /> IPos : Nat -> INT’<br /> <span class="IdrisType"> IN</span>e<span class="IdrisType">gS :</span> <span class="IdrisType">Nat -> </span>I<span class="IdrisKeyword">NT'</span><br /> <br /> Ca<span class="IdrisFunction">st I</span>N<span class="IdrisKeyword">T</span><span class="IdrisData">‘ Int</span>e<span class="IdrisBound">g</span><span class="IdrisKeyword">e</span>r<span class="IdrisKeyword"> </span>w<span class="IdrisFunction">h</span>e<span class="IdrisFunction">re</span><br /> cast (IPos k) = cast k<br /> <span class="IdrisType"> ca</span>s<span class="IdrisType">t (I</span>N<span class="IdrisType">egS</span> <span class="IdrisKeyword">k) = </span>- cast (S k)<br /> <br /> Ca<span class="IdrisFunction">st I</span>N<span class="IdrisKeyword">T</span><span class="IdrisData">' INT</span> <span class="IdrisBound">w</span><span class="IdrisKeyword">h</span>e<span class="IdrisKeyword">r</span>e<br /> cast (IPos k) = k .-. 0<br /> <span class="IdrisFunction"> cast (I</span>N<span class="IdrisKeyword">e</span>g<span class="IdrisType">S k</span>)<span class="IdrisKeyword"> =</span> <span class="IdrisType">0 .</span>-. (S k)<br /> <br /> <span class="IdrisFunction">normalise</span> <span class="IdrisBound">:</span><span class="IdrisKeyword"> IN</span><span class="IdrisData">T</span> <span class="IdrisBound">-</span><span class="IdrisKeyword">></span> <span class="IdrisData">INT</span><br /> <span class="IdrisFunction">normalise</span> <span class="IdrisBound">i</span><span class="IdrisKeyword">@(0</span><span class="IdrisData"> </span>.<span class="IdrisBound">-</span><span class="IdrisKeyword">.</span> <span class="IdrisData">neg</span> <span class="IdrisKeyword"> </span><span class="IdrisData"> </span> <span class="IdrisBound"> </span><span class="IdrisKeyword"> )</span> <span class="IdrisKeyword">=</span> <span class="IdrisFunction">i</span><br /> normalise i@((S k) .-. 0 ) = i<br /> <span class="IdrisFunction">normalise i@((S k) </span>.<span class="IdrisKeyword">-</span>.<span class="IdrisKeyword"> </span><span class="IdrisBound">(</span>S<span class="IdrisKeyword"> </span>j<span class="IdrisType">)) </span><span class="IdrisKeyword">=</span> <span class="IdrisKeyword">no</span>r<span class="IdrisType">malise</span> <span class="IdrisKeyword">(k</span><span class="IdrisFunction"> .-. j)</span><br /> <br /> <span class="IdrisFunction">normaliseEitherZero</span> <span class="IdrisBound">:</span><span class="IdrisKeyword"> (x</span><span class="IdrisData"> </span>:<span class="IdrisBound"> </span><span class="IdrisKeyword">I</span>N<span class="IdrisData">T) </span>-<span class="IdrisData">></span> Eit<span class="IdrisKeyword">h</span>e<span class="IdrisKeyword">r</span> <span class="IdrisData">((nor</span>m<span class="IdrisData">alis</span>e x).pos = Z) ((normalise x).neg = Z)<br /> <span class="IdrisFunction">normaliseEitherZero</span> <span class="IdrisBound">i</span><span class="IdrisKeyword">@(0</span><span class="IdrisData"> </span>.<span class="IdrisBound">-</span><span class="IdrisKeyword">.</span> <span class="IdrisData">neg</span> <span class="IdrisKeyword"> </span><span class="IdrisData"> </span> <span class="IdrisBound"> </span><span class="IdrisKeyword"> )</span> <span class="IdrisKeyword">=</span> <span class="IdrisFunction">Left Refl</span><br /> normaliseEitherZero i@((S k) .-. 0 ) = Right Refl<br /> <span class="IdrisType">norm</span>a<span class="IdrisType">lis</span>e<span class="IdrisType">Eith</span>e<span class="IdrisKeyword">rZero</span> i@((S k) .-. (S j)) = normaliseEitherZero (k .-. j)<br /> <br /> Cast<span class="IdrisKeyword"> INT</span> <span class="IdrisFunction">INT' where</span><br /> cast<span class="IdrisKeyword"> </span><span class="IdrisData">x = </span>l<span class="IdrisBound">e</span><span class="IdrisKeyword">t</span> <span class="IdrisKeyword">(p</span>o<span class="IdrisKeyword">s .-</span>.<span class="IdrisBound"> ne</span>g<span class="IdrisKeyword">) </span>= normalise x in<br /> case<span class="IdrisData"> </span>n<span class="IdrisKeyword">or</span>m<span class="IdrisData">alis</span>e<span class="IdrisData">E</span>itherZero x of<br /> (L<span class="IdrisKeyword">e</span><span class="IdrisData">f</span>t<span class="IdrisBound"> </span><span class="IdrisKeyword">y</span>)<span class="IdrisKeyword"> =</span>><span class="IdrisData"> case</span> <span class="IdrisBound">n</span>eg of<br /> <span class="IdrisKeyword"> </span><span class="IdrisData"> 0 =></span> <span class="IdrisBound">I</span><span class="IdrisKeyword">P</span>o<span class="IdrisKeyword">s </span>0<br /> (S k) => INegS k<br /> <span class="IdrisComment"> (Right y) => IPo</span>s pos<br /> <br /> <span class="IdrisComment">– stuff you can show:</span><br /> <br /> <span class="IdrisBound">-</span>-<span class="IdrisFunction"> x </span><code><span class="IdrisBound">S</span>a<span class="IdrisKeyword">m</span>e<span class="IdrisFunction">Diff</span></code><span class="IdrisKeyword"> </span><span class="IdrisFunction">y -></span> <span class="IdrisBound">n</span>o<span class="IdrisFunction">rma</span>l<span class="IdrisFunction">ise </span>x<span class="IdrisBound"> </span><span class="IdrisKeyword">=</span> normalise y<br /> <span class="IdrisBound">(</span>:<span class="IdrisFunction">*:)</span>,<span class="IdrisBound"> </span>(<span class="IdrisKeyword">:</span>+<span class="IdrisFunction">:) :</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">x,y </span>:<span class="IdrisBound"> </span>I<span class="IdrisFunction">NT'</span>)<span class="IdrisFunction"> -> </span>I<span class="IdrisBound">N</span><span class="IdrisKeyword">T</span>’<br /> x :+: y = cast (cast x .+. cast y)<br /> x :*: y = cast (cast x .*. cast y)<br /> <br /> </code></p> diff --git a/doc/Tutorial.md b/doc/Tutorial.md index b9a5896..439d245 100644 --- a/doc/Tutorial.md +++ b/doc/Tutorial.md @@ -241,34 +241,101 @@ setoid package doesn't use them, we'll use them in a few examples. The `Overlap` relation from Examples 1 and 2 is symmetric: <code class="IdrisCode"> -Symm<span class="IdrisKeyword">e</span>tric (List a) Overlap where<br /> - symmetric xs\_overlaps\_ys = Overlapping<br /> - { common = xs\_overlaps\_ys.common<br /> - , lhsPos = xs\_overlaps\_ys.rhsPos<br /> - , rhsPos = xs\_overlaps\_ys.lhsPos<br /> - }<br /> +<span class="IdrisType">Symmetric</span> <span class="IdrisKeyword">(</span><span class="IdrisType">List</span> <span class="IdrisBound">a</span><span class="IdrisKeyword">)</span> <span class="IdrisType">Overlap</span> <span class="IdrisKeyword">where</span><br /> + <span class="IdrisFunction">symmetric</span> <span class="IdrisBound">xs\_overlaps\_ys</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">Overlapping</span><br /> + <span class="IdrisKeyword">{</span> <span class="IdrisBound">common</span> <span class="IdrisKeyword">=</span> <span class="IdrisBound">xs\_overlaps\_ys</span><span class="IdrisFunction">.common</span><br /> + <span class="IdrisKeyword">,</span> <span class="IdrisBound">lhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisBound">xs\_overlaps\_ys</span><span class="IdrisFunction">.rhsPos</span><br /> + <span class="IdrisKeyword">,</span> <span class="IdrisBound">rhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisBound">xs\_overlaps\_ys</span><span class="IdrisFunction">.lhsPos</span><br /> + <span class="IdrisKeyword">}</span><br /> </code> However, `Overlap` is neither reflexive nor transitive: * The empty list doesn't overlap with itself: <code class="IdrisCode"> -Ex3 : Not (Overlap [] [])<br /> -Ex3 nil\_overlaps\_nil = case nil\_overlaps\_nil.lhsPos of<br /> -<span class="IdrisFunction"> \_</span> <span class="IdrisKeyword">i</span>m<span class="IdrisKeyword">p</span>o<span class="IdrisType">ssible</span><br /> +<span class="IdrisFunction">Ex3</span> <span class="IdrisKeyword">:</span> <span class="IdrisFunction">Not</span> <span class="IdrisKeyword">(</span><span class="IdrisType">Overlap</span> <span class="IdrisData">[]</span> <span class="IdrisData">[]</span><span class="IdrisKeyword">)</span><br /> +<span class="IdrisFunction">Ex3</span> <span class="IdrisBound">nil\_overlaps\_nil</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword">case</span> <span class="IdrisBound">nil\_overlaps\_nil</span><span class="IdrisFunction">.lhsPos</span> <span class="IdrisKeyword">of</span><br /> + <span class="IdrisKeyword">\_</span> <span class="IdrisKeyword">impossible</span><br /> </code> * Two lists may overlap with a middle list, but on different elements. For example: <code class="IdrisCode"> -Ex<span class="IdrisData">4</span> <span class="IdrisData">: ( Overlap</span> <span class="IdrisData">[</span>1<span class="IdrisKeyword">]</span><span class="IdrisData"> [1,2</span>]<br /> - <span class="IdrisData"> </span> <span class="IdrisKeyword"> </span> <span class="IdrisBound">, Overlap [1,2] </span>[<span class="IdrisKeyword">2]</span><br /> - <span class="IdrisData"> , No</span>t<span class="IdrisKeyword"> </span>(<span class="IdrisKeyword">Overlap [1</span>] [2]))<br /> -Ex<span class="IdrisKeyword">4</span> =<br /> - ( Overlapping 1 Here Here<br /> - , Overlapping 2 (There Here) Here<br /> - , \ one\_overlaps\_two => case one\_overlaps\_two.lhsPos of<br /> - There \_ impossible<br /> - )<br /> +<span class="IdrisFunction">Ex4</span> <span class="IdrisKeyword">:</span> <span class="IdrisKeyword">(</span> <span class="IdrisType">Overlap</span> <span class="IdrisData">[1]</span> <span class="IdrisData">[1,2]</span><br /> + <span class="IdrisType">,</span> <span class="IdrisType">Overlap</span> <span class="IdrisData">[1,2]</span> <span class="IdrisData">[2]</span><br /> + <span class="IdrisType">,</span> <span class="IdrisFunction">Not</span> <span class="IdrisKeyword">(</span><span class="IdrisType">Overlap</span> <span class="IdrisData">[1]</span> <span class="IdrisData">[2]</span><span class="IdrisKeyword">))</span><br /> +<span class="IdrisFunction">Ex4</span> <span class="IdrisKeyword">=</span><br /> + <span class="IdrisKeyword">(</span> <span class="IdrisData">Overlapping</span> <span class="IdrisData">1</span> <span class="IdrisData">Here</span> <span class="IdrisData">Here</span><br /> + <span class="IdrisData">,</span> <span class="IdrisData">Overlapping</span> <span class="IdrisData">2</span> <span class="IdrisKeyword">(</span><span class="IdrisData">There</span> <span class="IdrisData">Here</span><span class="IdrisKeyword">)</span> <span class="IdrisData">Here</span><br /> + <span class="IdrisData">,</span> <span class="IdrisKeyword">\</span> <span class="IdrisBound">one\_overlaps\_two</span> <span class="IdrisKeyword">=></span> <span class="IdrisKeyword">case</span> <span class="IdrisBound">one\_overlaps\_two</span><span class="IdrisFunction">.lhsPos</span> <span class="IdrisKeyword">of</span><br /> + <span class="IdrisData">There</span> <span class="IdrisKeyword">\_</span> <span class="IdrisKeyword">impossible</span><br /> + <span class="IdrisKeyword">)</span><br /> </code> The outer lists agree on `1` and `2`, respectively, but they can't overlap on on the first element of either, which exhausts all possibilities of overlap. + + +<code class="IdrisCode"> +<span class="IdrisBound">-</span>-<span class="IdrisFunction"> TO</span>D<span class="IdrisBound">O</span>:<span class="IdrisKeyword"> </span>c<span class="IdrisKeyword">l</span><span class="IdrisBound">e</span><span class="IdrisFunction">an t</span>h<span class="IdrisFunction">i</span>s<span class="IdrisBound"> </span><span class="IdrisFunction">up</span><br /> +(.+.) : (x, y : INT) -> INT<br /> +<span class="IdrisFunction">x .+.</span> <span class="IdrisKeyword">y</span> <span class="IdrisKeyword">=</span><span class="IdrisBound"> </span><span class="IdrisKeyword">(</span>x<span class="IdrisBound">.</span>p<span class="IdrisKeyword">o</span>s<span class="IdrisType"> + </span><span class="IdrisKeyword">y</span>.<span class="IdrisKeyword">po</span>s<span class="IdrisType">) .</span>-. (x.neg + y.neg)<br /> +<br /> +(.\*.) : (x, y : INT) -> INT<br /> +<span class="IdrisFunction">x</span><span class="IdrisKeyword"> </span>.<span class="IdrisFunction">\*</span>.<span class="IdrisKeyword"> </span>y<span class="IdrisType"> = </span>(x.pos \* y.pos + x.neg \* y.neg) .-. (x.pos \* y.neg + x.neg \* y.pos)<br /> +<br /> +<span class="IdrisFunction">O</span>,<span class="IdrisKeyword"> </span>I<span class="IdrisData"> </span>:<span class="IdrisData"> IN</span>T<br /> +<span class="IdrisFunction">O = 0 .-. 0</span><br /> +<span class="IdrisFunction">I = 1 .-. 0</span><br /> +plusIntZeroLftNeutral : (x : INT) -> O .+. x `SameDiff` x<br /> +<span class="IdrisFunction">plusIntZeroLftNeutral</span> <span class="IdrisKeyword">x</span> <span class="IdrisKeyword">=</span><span class="IdrisBound"> </span>C<span class="IdrisKeyword">h</span>e<span class="IdrisType">ck </span><span class="IdrisKeyword">R</span>e<span class="IdrisKeyword">fl</span><br /> +<br /> +plusIntZeroRgtNeutral : (x : INT) -> <span class="IdrisKeyword">x</span><span class="IdrisBound"> </span>.<span class="IdrisKeyword">+</span>.<span class="IdrisFunction"> O `SameDiff</span><span class="IdrisKeyword">`</span> x<br /> +plusIntZeroRgtNeutral x = Check (solv<span class="IdrisKeyword">e</span><span class="IdrisFunction"> </span>2<span class="IdrisData"> </span>M<span class="IdrisFunction">ono</span>i<span class="IdrisFunction">d.</span><span class="IdrisKeyword">C</span>o<span class="IdrisFunction">mmu</span>t<span class="IdrisFunction">a</span>t<span class="IdrisData">i</span>ve.Free.Free<br /> + <span class="IdrisFunction"> </span> <span class="IdrisFunction">{</span>a<span class="IdrisData"> </span>=<span class="IdrisFunction"> Na</span>t<span class="IdrisKeyword">.</span><span class="IdrisFunction">A</span>d<span class="IdrisData">d</span>i<span class="IdrisFunction">tiv</span>e<span class="IdrisFunction">} </span><span class="IdrisKeyword">$</span><br /> + (X 0 .+. O1) .+. X 1<br /> +<span class="IdrisFunction"> </span> <span class="IdrisKeyword"> </span> <span class="IdrisKeyword"> </span><span class="IdrisBound"> </span><span class="IdrisKeyword"> </span><span class="IdrisBound"> </span><span class="IdrisKeyword"> </span><span class="IdrisBound"> </span> <span class="IdrisKeyword"> </span> <span class="IdrisType"> </span><span class="IdrisKeyword">=</span>-<span class="IdrisKeyword">= </span>X<span class="IdrisBound"> </span>0<span class="IdrisFunction"> .+</span>.<span class="IdrisKeyword"> </span><span class="IdrisBound">(</span>X<span class="IdrisFunction"> 1 </span>.<span class="IdrisBound">+</span><span class="IdrisKeyword">.</span> <span class="IdrisType">O1))</span><br /> +<br /> +plusInrAssociative : (x,y,z : INT) -><span class="IdrisKeyword"> </span><span class="IdrisBound">x</span> <span class="IdrisKeyword">.</span>+<span class="IdrisFunction">. (y .+. z) </span><span class="IdrisKeyword">`</span>SameDiff` (x .+. y) .+. z<br /> +plusInrAssociative x y z = Check $<span class="IdrisKeyword"> </span><span class="IdrisFunction">(</span>s<span class="IdrisData">o</span>l<span class="IdrisFunction">ve </span>6<span class="IdrisKeyword"> </span><span class="IdrisFunction">M</span>o<span class="IdrisData">n</span>o<span class="IdrisFunction">id.</span>C<span class="IdrisFunction">o</span>m<span class="IdrisData">m</span><span class="IdrisKeyword">ut</span>a<span class="IdrisFunction">tiv</span>e<span class="IdrisKeyword">.F</span><span class="IdrisFunction">r</span>e<span class="IdrisData">e</span>.<span class="IdrisFunction">Fre</span>e<br /> + <span class="IdrisFunction"> </span>{<span class="IdrisKeyword">a</span><span class="IdrisFunction"> </span>=<span class="IdrisData"> </span>N<span class="IdrisFunction">at.</span>A<span class="IdrisFunction">d</span>d<span class="IdrisData">i</span>t<span class="IdrisFunction">ive</span>}<span class="IdrisFunction"> </span>$<br /> + (X 0 .+. (X 1 .+. X 2)) .+. ((X 3 .+. X 4) .+. X 5)<br /> +<span class="IdrisKeyword"> </span> <span class="IdrisType"> </span> <span class="IdrisKeyword"> </span> <span class="IdrisType"> </span> <span class="IdrisKeyword"> </span> =-= (X 0 .+. X 1 .+. X 2) .+. (X 3 .+. (X 4 .+. X 5)))<br /> +<br /> +da<span class="IdrisData">ta IN</span>T<span class="IdrisKeyword">'</span> <span class="IdrisType">: T</span>y<span class="IdrisKeyword">pe</span> <span class="IdrisType">wher</span>e<br /> + IPos : Nat -> INT'<br /> +<span class="IdrisType"> IN</span>e<span class="IdrisType">gS :</span> <span class="IdrisType">Nat -> </span>I<span class="IdrisKeyword">NT'</span><br /> +<br /> +Ca<span class="IdrisFunction">st I</span>N<span class="IdrisKeyword">T</span><span class="IdrisData">' Int</span>e<span class="IdrisBound">g</span><span class="IdrisKeyword">e</span>r<span class="IdrisKeyword"> </span>w<span class="IdrisFunction">h</span>e<span class="IdrisFunction">re</span><br /> + cast (IPos k) = cast k<br /> +<span class="IdrisType"> ca</span>s<span class="IdrisType">t (I</span>N<span class="IdrisType">egS</span> <span class="IdrisKeyword">k) = </span>- cast (S k)<br /> +<br /> +Ca<span class="IdrisFunction">st I</span>N<span class="IdrisKeyword">T</span><span class="IdrisData">' INT</span> <span class="IdrisBound">w</span><span class="IdrisKeyword">h</span>e<span class="IdrisKeyword">r</span>e<br /> + cast (IPos k) = k .-. 0<br /> +<span class="IdrisFunction"> cast (I</span>N<span class="IdrisKeyword">e</span>g<span class="IdrisType">S k</span>)<span class="IdrisKeyword"> =</span> <span class="IdrisType">0 .</span>-. (S k)<br /> +<br /> +<span class="IdrisFunction">normalise</span> <span class="IdrisBound">:</span><span class="IdrisKeyword"> IN</span><span class="IdrisData">T</span> <span class="IdrisBound">-</span><span class="IdrisKeyword">></span> <span class="IdrisData">INT</span><br /> +<span class="IdrisFunction">normalise</span> <span class="IdrisBound">i</span><span class="IdrisKeyword">@(0</span><span class="IdrisData"> </span>.<span class="IdrisBound">-</span><span class="IdrisKeyword">.</span> <span class="IdrisData">neg</span> <span class="IdrisKeyword"> </span><span class="IdrisData"> </span> <span class="IdrisBound"> </span><span class="IdrisKeyword"> )</span> <span class="IdrisKeyword">=</span> <span class="IdrisFunction">i</span><br /> +normalise i@((S k) .-. 0 ) = i<br /> +<span class="IdrisFunction">normalise i@((S k) </span>.<span class="IdrisKeyword">-</span>.<span class="IdrisKeyword"> </span><span class="IdrisBound">(</span>S<span class="IdrisKeyword"> </span>j<span class="IdrisType">)) </span><span class="IdrisKeyword">=</span> <span class="IdrisKeyword">no</span>r<span class="IdrisType">malise</span> <span class="IdrisKeyword">(k</span><span class="IdrisFunction"> .-. j)</span><br /> +<br /> +<span class="IdrisFunction">normaliseEitherZero</span> <span class="IdrisBound">:</span><span class="IdrisKeyword"> (x</span><span class="IdrisData"> </span>:<span class="IdrisBound"> </span><span class="IdrisKeyword">I</span>N<span class="IdrisData">T) </span>-<span class="IdrisData">></span> Eit<span class="IdrisKeyword">h</span>e<span class="IdrisKeyword">r</span> <span class="IdrisData">((nor</span>m<span class="IdrisData">alis</span>e x).pos = Z) ((normalise x).neg = Z)<br /> +<span class="IdrisFunction">normaliseEitherZero</span> <span class="IdrisBound">i</span><span class="IdrisKeyword">@(0</span><span class="IdrisData"> </span>.<span class="IdrisBound">-</span><span class="IdrisKeyword">.</span> <span class="IdrisData">neg</span> <span class="IdrisKeyword"> </span><span class="IdrisData"> </span> <span class="IdrisBound"> </span><span class="IdrisKeyword"> )</span> <span class="IdrisKeyword">=</span> <span class="IdrisFunction">Left Refl</span><br /> +normaliseEitherZero i@((S k) .-. 0 ) = Right Refl<br /> +<span class="IdrisType">norm</span>a<span class="IdrisType">lis</span>e<span class="IdrisType">Eith</span>e<span class="IdrisKeyword">rZero</span> i@((S k) .-. (S j)) = normaliseEitherZero (k .-. j)<br /> +<br /> +Cast<span class="IdrisKeyword"> INT</span> <span class="IdrisFunction">INT' where</span><br /> + cast<span class="IdrisKeyword"> </span><span class="IdrisData">x = </span>l<span class="IdrisBound">e</span><span class="IdrisKeyword">t</span> <span class="IdrisKeyword">(p</span>o<span class="IdrisKeyword">s .-</span>.<span class="IdrisBound"> ne</span>g<span class="IdrisKeyword">) </span>= normalise x in<br /> + case<span class="IdrisData"> </span>n<span class="IdrisKeyword">or</span>m<span class="IdrisData">alis</span>e<span class="IdrisData">E</span>itherZero x of<br /> + (L<span class="IdrisKeyword">e</span><span class="IdrisData">f</span>t<span class="IdrisBound"> </span><span class="IdrisKeyword">y</span>)<span class="IdrisKeyword"> =</span>><span class="IdrisData"> case</span> <span class="IdrisBound">n</span>eg of<br /> + <span class="IdrisKeyword"> </span><span class="IdrisData"> 0 =></span> <span class="IdrisBound">I</span><span class="IdrisKeyword">P</span>o<span class="IdrisKeyword">s </span>0<br /> + (S k) => INegS k<br /> +<span class="IdrisComment"> (Right y) => IPo</span>s pos<br /> +<br /> +<span class="IdrisComment">-- stuff you can show:</span><br /> +<br /> +<span class="IdrisBound">-</span>-<span class="IdrisFunction"> x </span>`<span class="IdrisBound">S</span>a<span class="IdrisKeyword">m</span>e<span class="IdrisFunction">Diff</span>`<span class="IdrisKeyword"> </span><span class="IdrisFunction">y -></span> <span class="IdrisBound">n</span>o<span class="IdrisFunction">rma</span>l<span class="IdrisFunction">ise </span>x<span class="IdrisBound"> </span><span class="IdrisKeyword">=</span> normalise y<br /> +<span class="IdrisBound">(</span>:<span class="IdrisFunction">\*:)</span>,<span class="IdrisBound"> </span>(<span class="IdrisKeyword">:</span>+<span class="IdrisFunction">:) :</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">x,y </span>:<span class="IdrisBound"> </span>I<span class="IdrisFunction">NT'</span>)<span class="IdrisFunction"> -> </span>I<span class="IdrisBound">N</span><span class="IdrisKeyword">T</span>'<br /> +x :+: y = cast (cast x .+. cast y)<br /> +x :\*: y = cast (cast x .\*. cast y)<br /> +<br /> +</code> + diff --git a/doc/setoid-doc.ipkg b/doc/setoid-doc.ipkg index b97fb59..9bce2e7 100644 --- a/doc/setoid-doc.ipkg +++ b/doc/setoid-doc.ipkg @@ -19,6 +19,7 @@ depends , frex modules = Tutorial + , Minh -- name of executable sourcedir = "sources" diff --git a/doc/sources/Tutorial.md b/doc/sources/Tutorial.md index a33652f..68dda37 100644 --- a/doc/sources/Tutorial.md +++ b/doc/sources/Tutorial.md @@ -251,3 +251,70 @@ Ex4 = ``` The outer lists agree on `1` and `2`, respectively, but they can't overlap on on the first element of either, which exhausts all possibilities of overlap. + + + +```idris +-- TODO: clean this up +(.+.) : (x, y : INT) -> INT +x .+. y = (x.pos + y.pos) .-. (x.neg + y.neg) + +(.*.) : (x, y : INT) -> INT +x .*. y = (x.pos * y.pos + x.neg * y.neg) .-. (x.pos * y.neg + x.neg * y.pos) + +O, I : INT +O = 0 .-. 0 +I = 1 .-. 0 +plusIntZeroLftNeutral : (x : INT) -> O .+. x `SameDiff` x +plusIntZeroLftNeutral x = Check Refl + +plusIntZeroRgtNeutral : (x : INT) -> x .+. O `SameDiff` x +plusIntZeroRgtNeutral x = Check (solve 2 Monoid.Commutative.Free.Free + {a = Nat.Additive} $ + (X 0 .+. O1) .+. X 1 + =-= X 0 .+. (X 1 .+. O1)) + +plusInrAssociative : (x,y,z : INT) -> x .+. (y .+. z) `SameDiff` (x .+. y) .+. z +plusInrAssociative x y z = Check $ (solve 6 Monoid.Commutative.Free.Free + {a = Nat.Additive} $ + (X 0 .+. (X 1 .+. X 2)) .+. ((X 3 .+. X 4) .+. X 5) + =-= (X 0 .+. X 1 .+. X 2) .+. (X 3 .+. (X 4 .+. X 5))) + +data INT' : Type where + IPos : Nat -> INT' + INegS : Nat -> INT' + +Cast INT' Integer where + cast (IPos k) = cast k + cast (INegS k) = - cast (S k) + +Cast INT' INT where + cast (IPos k) = k .-. 0 + cast (INegS k) = 0 .-. (S k) + +normalise : INT -> INT +normalise i@(0 .-. neg ) = i +normalise i@((S k) .-. 0 ) = i +normalise i@((S k) .-. (S j)) = normalise (k .-. j) + +normaliseEitherZero : (x : INT) -> Either ((normalise x).pos = Z) ((normalise x).neg = Z) +normaliseEitherZero i@(0 .-. neg ) = Left Refl +normaliseEitherZero i@((S k) .-. 0 ) = Right Refl +normaliseEitherZero i@((S k) .-. (S j)) = normaliseEitherZero (k .-. j) + +Cast INT INT' where + cast x = let (pos .-. neg) = normalise x in + case normaliseEitherZero x of + (Left y) => case neg of + 0 => IPos 0 + (S k) => INegS k + (Right y) => IPos pos + +-- stuff you can show: + +-- x `SameDiff` y -> normalise x = normalise y +(:*:), (:+:) : (x,y : INT') -> INT' +x :+: y = cast (cast x .+. cast y) +x :*: y = cast (cast x .*. cast y) + +``` |