diff options
author | Ohad Kammar <ohad.kammar@ed.ac.uk> | 2022-08-07 23:35:19 +0100 |
---|---|---|
committer | Ohad Kammar <ohad.kammar@ed.ac.uk> | 2022-08-07 23:35:19 +0100 |
commit | 85b191cd3134102c7205c1771806ee16f73b3a89 (patch) | |
tree | 9ca3e343244e8a1e5fc15f4874e220f4c852651a | |
parent | bc260cdfa7b309820594b7caf14f62be8343358e (diff) |
Write about equivalence relations
-rw-r--r-- | doc/Makefile | 4 | ||||
-rw-r--r-- | doc/Tutorial.html | 43 | ||||
-rw-r--r-- | doc/Tutorial.md | 270 | ||||
-rw-r--r-- | doc/pack.toml | 8 | ||||
-rw-r--r-- | doc/setoid-doc.ipkg | 6 | ||||
-rw-r--r-- | doc/sources/Tutorial.md | 230 |
6 files changed, 553 insertions, 8 deletions
diff --git a/doc/Makefile b/doc/Makefile index ac7e6e3..c50a300 100644 --- a/doc/Makefile +++ b/doc/Makefile @@ -6,8 +6,8 @@ ttms: pack build setoid-doc.ipkg %.html: .PHONY - pack run katla markdown --config ./setoid-doc-style.dhall sources/$*.md ./build/ttc/$*.ttm \ - | pandoc -o $*.html + pack run katla markdown --config ./setoid-doc-style.dhall sources/$*.md ./build/ttc/$*.ttm > $*.md + pandoc $*.md -o $*.html install-deps: pack install-deps setoid-doc.ipkg diff --git a/doc/Tutorial.html b/doc/Tutorial.html index ae77959..5336f7a 100644 --- a/doc/Tutorial.html +++ b/doc/Tutorial.html @@ -44,5 +44,44 @@ <li><p>constructing types with an equality relation that’s better behaved than Idris’s built-in <code>Equal</code> type.</p></li> <li><p>types with an equality relation that carries additional information</p></li> </ul> -<h2 id="basic-interface">Basic interface</h2> -<p><code class="IdrisCode"> <br /> </code></p> +<p>If you want to see the source-code behind this tutorial, check the <a href="sources/Tutorial.md">source-code</a> out.</p> +<h2 id="equivalence-relations">Equivalence relations</h2> +<p>A <em>relation</em> over a type <code>ty</code> in Idris is any two-argument type-valued function:</p> +<pre><code>namespace Control.Relation + Rel : Type -> Type + Rel ty = ty -> ty -> Type</code></pre> +<p>This definition and its associated interfaces ship with idris’s standard library. Given a relation <code>rel : Rel ty</code> and <code>x,y : ty</code>, we can form <code>x `rel` y : Type</code>: the type of ways in which <code>x</code> and <code>y</code> can be related.</p> +<p>For example, two lists <em>overlap</em> when they have a common element: <code class="IdrisCode"> <span class="IdrisKeyword">record</span> <span class="IdrisType">Overlap</span> <span class="IdrisKeyword">{0</span> <span class="IdrisBound">a</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">Type</span><span class="IdrisKeyword">}</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">xs</span><span class="IdrisKeyword">,</span><span class="IdrisBound">ys</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">List</span> <span class="IdrisBound">a</span><span class="IdrisKeyword">)</span> <span class="IdrisKeyword">where</span><br /> constructor <span class="IdrisData">Overlapping</span><br /> <span class="IdrisFunction">common</span> <span class="IdrisKeyword">:</span> <span class="IdrisBound">a</span><br /> <span class="IdrisFunction">lhsPos</span> <span class="IdrisKeyword">:</span> <span class="IdrisBound">common</span> <span class="IdrisType"><code>Elem</code></span> <span class="IdrisBound">xs</span><br /> <span class="IdrisFunction">rhsPos</span> <span class="IdrisKeyword">:</span> <span class="IdrisBound">common</span> <span class="IdrisType"><code>Elem</code></span> <span class="IdrisBound">ys</span><br /> <br /> </code> Lists can overlap in exactly one position: <code class="IdrisCode"> <span class="IdrisFunction">Ex1</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">Overlap</span> <span class="IdrisData">[1,2,3]</span> <span class="IdrisData">[6,7,2,8]</span><br /> <span class="IdrisFunction">Ex1</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">Overlapping</span><br /> <span class="IdrisKeyword">{</span> <span class="IdrisBound">common</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">2</span><br /> <span class="IdrisKeyword">,</span> <span class="IdrisBound">lhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">There</span> <span class="IdrisData">Here</span><br /> <span class="IdrisKeyword">,</span> <span class="IdrisBound">rhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">There</span> <span class="IdrisKeyword">(</span><span class="IdrisData">There</span> <span class="IdrisData">Here</span><span class="IdrisKeyword">)</span><br /> <span class="IdrisKeyword">}</span><br /> </code> But they can overlap in several ways: <code class="IdrisCode"> <span class="IdrisFunction">Ex2a</span> <span class="IdrisKeyword">,</span><br /> <span class="IdrisFunction">Ex2b</span> <span class="IdrisKeyword">,</span><br /> <span class="IdrisFunction">Ex2c</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">Overlap</span> <span class="IdrisData">[1,2,3]</span> <span class="IdrisData">[2,3,2]</span><br /> <span class="IdrisFunction">Ex2a</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">Overlapping</span><br /> <span class="IdrisKeyword">{</span> <span class="IdrisBound">common</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">3</span><br /> <span class="IdrisKeyword">,</span> <span class="IdrisBound">lhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">There</span> <span class="IdrisKeyword">(</span><span class="IdrisData">There</span> <span class="IdrisData">Here</span><span class="IdrisKeyword">)</span><br /> <span class="IdrisKeyword">,</span> <span class="IdrisBound">rhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">There</span> <span class="IdrisData">Here</span><br /> <span class="IdrisKeyword">}</span><br /> <span class="IdrisFunction">Ex2b</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">Overlapping</span><br /> <span class="IdrisKeyword">{</span> <span class="IdrisBound">common</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">2</span><br /> <span class="IdrisKeyword">,</span> <span class="IdrisBound">lhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">There</span> <span class="IdrisData">Here</span><br /> <span class="IdrisKeyword">,</span> <span class="IdrisBound">rhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">Here</span><br /> <span class="IdrisKeyword">}</span><br /> <span class="IdrisFunction">Ex2c</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">Overlapping</span><br /> <span class="IdrisKeyword">{</span> <span class="IdrisBound">common</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">2</span><br /> <span class="IdrisKeyword">,</span> <span class="IdrisBound">lhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">There</span> <span class="IdrisData">Here</span><br /> <span class="IdrisKeyword">,</span> <span class="IdrisBound">rhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">There</span> <span class="IdrisKeyword">(</span><span class="IdrisData">There</span> <span class="IdrisData">Here</span><span class="IdrisKeyword">)</span><br /> <span class="IdrisKeyword">}</span><br /> </code> We can think of a relation <code>rel : Rel ty</code> as the type of edges in a directed graph between vertices in <code>ty</code>:</p> +<ul> +<li><p>edges have a direction: the type <code>rel x y</code> is different to <code>rel y x</code></p></li> +<li><p>multiple different edges between the same vertices <code>e1, e2 : rel x y</code></p></li> +<li><p>self-loops between the same vertex are allowed <code>loop : rel x x</code>.</p></li> +</ul> +<p>An <em>equivalence relation</em> is a relation that’s:</p> +<ul> +<li><p><em>reflexive</em>: we guarantee a specific way in which every element is related to itself;</p></li> +<li><p><em>symmetric</em>: we can reverse an edge between two edges; and</p></li> +<li><p><em>transitive</em>: we can compose paths of related elements into a single edge.</p></li> +</ul> +<p><code class="IdrisCode"> <span class="IdrisKeyword">record</span> <span class="IdrisType">Equivalence</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">A</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">Type</span><span class="IdrisKeyword">)</span> <span class="IdrisKeyword">where</span><br /> constructor <span class="IdrisData">MkEquivalence</span><br /> <span class="IdrisKeyword">0</span> <span class="IdrisFunction">relation</span><span class="IdrisKeyword">:</span> <span class="IdrisFunction">Rel</span> <span class="IdrisBound">A</span><br /> <span class="IdrisFunction">reflexive</span> <span class="IdrisKeyword">:</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">x</span> <span class="IdrisKeyword">:</span> <span class="IdrisBound">A</span><span class="IdrisKeyword">)</span> <span class="IdrisKeyword">-></span> <span class="IdrisBound">relation</span> <span class="IdrisBound">x</span> <span class="IdrisBound">x</span><br /> <span class="IdrisFunction">symmetric</span> <span class="IdrisKeyword">:</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span> <span class="IdrisBound">y</span> <span class="IdrisKeyword">:</span> <span class="IdrisBound">A</span><span class="IdrisKeyword">)</span> <span class="IdrisKeyword">-></span> <span class="IdrisBound">relation</span> <span class="IdrisBound">x</span> <span class="IdrisBound">y</span> <span class="IdrisKeyword">-></span> <span class="IdrisBound">relation</span> <span class="IdrisBound">y</span> <span class="IdrisBound">x</span><br /> <span class="IdrisFunction">transitive</span><span class="IdrisKeyword">:</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span> <span class="IdrisBound">y</span><span class="IdrisKeyword">,</span> <span class="IdrisBound">z</span> <span class="IdrisKeyword">:</span> <span class="IdrisBound">A</span><span class="IdrisKeyword">)</span> <span class="IdrisKeyword">-></span> <span class="IdrisBound">relation</span> <span class="IdrisBound">x</span> <span class="IdrisBound">y</span> <span class="IdrisKeyword">-></span> <span class="IdrisBound">relation</span> <span class="IdrisBound">y</span> <span class="IdrisBound">z</span><br /> <span class="IdrisKeyword">-></span> <span class="IdrisBound">relation</span> <span class="IdrisBound">x</span> <span class="IdrisBound">z</span><br /> </code></p> +<p>We equip the built-in relation <code>Equal</code> with the structure of an equivalence relation, using the constructor <code>Refl</code> and the stdlib functions <code>sym</code>, and <code>trans</code>: <code class="IdrisCode"> <span class="IdrisFunction">EqualityEquivalence</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">Equivalence</span> <span class="IdrisBound">a</span><br /> <span class="IdrisFunction">EqualityEquivalence</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">MkEquivalence</span><br /> <span class="IdrisKeyword">{</span> <span class="IdrisBound">relation</span> <span class="IdrisKeyword">=</span> <span class="IdrisFunction">(===)</span><br /> <span class="IdrisKeyword">,</span> <span class="IdrisBound">reflexive</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword"></span><span class="IdrisBound">x</span> <span class="IdrisKeyword">=></span> <span class="IdrisData">Refl</span><br /> <span class="IdrisKeyword">,</span> <span class="IdrisBound">symmetric</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword"></span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">x_eq_y</span> <span class="IdrisKeyword">=></span> <span class="IdrisFunction">sym</span> <span class="IdrisBound">x_eq_y</span><br /> <span class="IdrisKeyword">,</span> <span class="IdrisBound">transitive</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword"></span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">z</span><span class="IdrisKeyword">,</span><span class="IdrisBound">x_eq_y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y_eq_z</span> <span class="IdrisKeyword">=></span> <span class="IdrisFunction">trans</span> <span class="IdrisBound">x_eq_y</span> <span class="IdrisBound">y_eq_z</span><br /> <span class="IdrisKeyword">}</span><br /> </code></p> +<p>We’ll use the following relation on pairs of natural numbers as a running example. We can represent an integer as the difference between a pair of natural numbers: <code class="IdrisCode"> <span class="IdrisKeyword">infix</span> <span class="IdrisKeyword">8</span> .-.<br /> <br /> <span class="IdrisKeyword">record</span> <span class="IdrisType">INT</span> <span class="IdrisKeyword">where</span><br /> constructor <span class="IdrisData">(.-.)</span><br /> <span class="IdrisFunction">pos</span><span class="IdrisKeyword">,</span> <span class="IdrisFunction">neg</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">Nat</span><br /> <br /> <span class="IdrisKeyword">record</span> <span class="IdrisType">SameDiff</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span> <span class="IdrisBound">y</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">INT</span><span class="IdrisKeyword">)</span> <span class="IdrisKeyword">where</span><br /> constructor <span class="IdrisData">Check</span><br /> <span class="IdrisFunction">same</span> <span class="IdrisKeyword">:</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">x</span><span class="IdrisFunction">.pos + </span><span class="IdrisBound">y</span><span class="IdrisFunction">.neg === </span><span class="IdrisBound">y</span><span class="IdrisFunction">.pos + </span><span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span><span class="IdrisKeyword">)</span><br /> </code> The <code>SameDiff x y</code> relation is equivalent to mathematical equation that states that the difference between the positive and negative parts is identical: <br /><span class="math display"><em>x</em><sub><em>p</em><em>o</em><em>s</em></sub> − <em>x</em><sub><em>n</em><em>e</em><em>g</em></sub> = <em>y</em><sub><em>p</em><em>o</em><em>s</em></sub> − <em>y</em><sub><em>n</em><em>e</em><em>g</em></sub></span><br /> But, unlike the last equation which requires us to define integers and subtraction, its equivalent <code>(.same)</code> is expressed using only addition, and so addition on <code>Nat</code> is enough.</p> +<p>The relation <code>SameDiff</code> is an equivalence relation. The proofs are straightforward, and a good opportunity to practice Idris’s equational reasoning combinators from <code>Syntax.PreorderReasoning</code>: <code class="IdrisCode"> <span class="IdrisFunction">SameDiffEquivalence</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">Equivalence</span> <span class="IdrisType">INT</span><br /> <span class="IdrisFunction">SameDiffEquivalence</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">MkEquivalence</span><br /> <span class="IdrisKeyword">{</span> <span class="IdrisBound">relation</span> <span class="IdrisKeyword">=</span> <span class="IdrisType">SameDiff</span><br /> <span class="IdrisKeyword">,</span> <span class="IdrisBound">reflexive</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword"></span><span class="IdrisBound">x</span> <span class="IdrisKeyword">=></span> <span class="IdrisData">Check</span> <span class="math inline">$&nbsp;<span class="IdrisFunction">Calc</span>&nbsp;$</span><br /> <span class="IdrisData">|~</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span><br /> <span class="IdrisData">~~</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span> <span class="IdrisData">…</span><span class="IdrisKeyword">(</span><span class="IdrisData">Refl</span><span class="IdrisKeyword">)</span><br /> </code> This equational proof represents the single-step equational proof:</p> +<p>"Calculate:</p> +<ol type="1"> +<li><span class="math inline"><em>x</em><sub><em>p</em><em>o</em><em>s</em></sub> + <em>x</em><sub><em>n</em><em>e</em><em>g</em></sub></span></li> +<li><span class="math inline"> = <em>x</em><sub><em>p</em><em>o</em><em>s</em></sub> + <em>x</em><sub><em>n</em><em>e</em><em>g</em></sub></span> (by reflexivity)"</li> +</ol> +<p>The mnemonic behind the ASCII-art is that the first step in the proof starts with a logical-judgement symbol <span class="math inline">⊢</span>, each step continues with an equality sign <span class="math inline">=</span>, and justified by a thought bubble <code>(...)</code>.</p> +<p><code class="IdrisCode"> <span class="IdrisKeyword">,</span> <span class="IdrisBound">symmetric</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword"></span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">x_eq_y</span> <span class="IdrisKeyword">=></span> <span class="IdrisData">Check</span> <span class="math inline">$&nbsp;<span class="IdrisFunction">Calc</span>&nbsp;$</span><br /> <span class="IdrisData">|~</span> <span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span><br /> <span class="IdrisData">~~</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">y</span><span class="IdrisFunction">.neg</span> <span class="IdrisFunction">..<</span><span class="IdrisKeyword">(</span><span class="IdrisBound">x_eq_y</span><span class="IdrisFunction">.same</span><span class="IdrisKeyword">)</span><br /> </code> In this proof, we were given the proof <code>x_eq_y.same : x.pos + y.neg = y.pos + x.neg</code> and so we appealed to the symmetric equation. The mnemonic here is that the last bubble in the thought bubble <code>(...)</code> is replace with a left-pointing arrow, reversing the reasoning step. <code class="IdrisCode"> <span class="IdrisKeyword">,</span> <span class="IdrisBound">transitive</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword"></span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">z</span><span class="IdrisKeyword">,</span><span class="IdrisBound">x_eq_y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y_eq_z</span> <span class="IdrisKeyword">=></span> <span class="IdrisData">Check</span> <span class="math inline">$&nbsp;<span class="IdrisFunction">plusRightCancel</span>&nbsp;<span class="IdrisKeyword">\_</span>&nbsp;<span class="IdrisKeyword">\_</span>&nbsp;<span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;$</span> <span class="IdrisFunction">Calc</span> <span class="math inline">$<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="IdrisData">|~</span>&nbsp;<span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span>&nbsp;<span class="IdrisFunction">+</span>&nbsp;<span class="IdrisBound">z</span><span class="IdrisFunction">.neg</span>&nbsp;<span class="IdrisFunction">+</span>&nbsp;<span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="IdrisData">~~</span>&nbsp;<span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span>&nbsp;<span class="IdrisFunction">+</span>&nbsp;<span class="IdrisKeyword">(</span><span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span>&nbsp;<span class="IdrisFunction">+</span>&nbsp;<span class="IdrisBound">z</span><span class="IdrisFunction">.neg</span><span class="IdrisKeyword">)</span>&nbsp;<span class="IdrisData">...</span><span class="IdrisKeyword">(</span><span class="IdrisFunction">solve</span>&nbsp;<span class="IdrisData">3</span>&nbsp;<span class="IdrisFunction">Monoid.Commutative.Free.Free</span><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="IdrisKeyword">{</span><span class="IdrisBound">a</span>&nbsp;<span class="IdrisKeyword">=</span>&nbsp;<span class="IdrisFunction">Nat.Additive</span><span class="IdrisKeyword">}</span>&nbsp;$</span><br /> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">0</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">1</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">2</span><br /> <span class="IdrisFunction">=-=</span> <span class="IdrisFunction">X</span> <span class="IdrisData">0</span> <span class="IdrisFunction">.+.</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">2</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">1</span><span class="IdrisKeyword">))</span><br /> <span class="IdrisData">~~</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">z</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">y</span><span class="IdrisFunction">.neg</span><span class="IdrisKeyword">)</span> <span class="IdrisData">…</span><span class="IdrisKeyword">(</span><span class="IdrisFunction">cong</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span><span class="IdrisKeyword">)</span> <span class="math inline">$&nbsp;<span class="IdrisBound">y\_eq\_z</span><span class="IdrisFunction">.same</span><span class="IdrisKeyword">)</span><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="IdrisData">~~</span>&nbsp;<span class="IdrisKeyword">(</span><span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span>&nbsp;<span class="IdrisFunction">+</span>&nbsp;<span class="IdrisBound">y</span><span class="IdrisFunction">.neg</span><span class="IdrisKeyword">)</span>&nbsp;<span class="IdrisFunction">+</span>&nbsp;<span class="IdrisBound">z</span><span class="IdrisFunction">.pos</span>&nbsp;<span class="IdrisData">...</span><span class="IdrisKeyword">(</span><span class="IdrisFunction">solve</span>&nbsp;<span class="IdrisData">3</span>&nbsp;<span class="IdrisFunction">Monoid.Commutative.Free.Free</span><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="IdrisKeyword">{</span><span class="IdrisBound">a</span>&nbsp;<span class="IdrisKeyword">=</span>&nbsp;<span class="IdrisFunction">Nat.Additive</span><span class="IdrisKeyword">}</span>&nbsp;$</span><br /> <span class="IdrisFunction">X</span> <span class="IdrisData">0</span> <span class="IdrisFunction">.+.</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">1</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">2</span><span class="IdrisKeyword">)</span><br /> <span class="IdrisFunction">=-=</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">0</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">2</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">1</span><span class="IdrisKeyword">)</span><br /> <span class="IdrisData">~~</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">z</span><span class="IdrisFunction">.pos</span> <span class="IdrisData">…</span><span class="IdrisKeyword">(</span><span class="IdrisFunction">cong</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">+</span> <span class="IdrisBound">z</span><span class="IdrisFunction">.pos</span><span class="IdrisKeyword">)</span> ?h2<span class="IdrisKeyword">)</span><br /> <span class="IdrisData">~~</span> <span class="IdrisBound">z</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span> <span class="IdrisData">…</span><span class="IdrisKeyword">(</span><span class="IdrisFunction">solve</span> <span class="IdrisData">3</span> <span class="IdrisFunction">Monoid.Commutative.Free.Free</span><br /> <span class="IdrisKeyword">{</span><span class="IdrisBound">a</span> <span class="IdrisKeyword">=</span> <span class="IdrisFunction">Nat.Additive</span><span class="IdrisKeyword">}</span> $<br /> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">0</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">1</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">2</span><br /> <span class="IdrisFunction">=-=</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">2</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">1</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">0</span><span class="IdrisKeyword">)</span><br /> <span class="IdrisKeyword">}</span><br /> </code> This proof is a lot more involved:</p> +<ol type="1"> +<li>We appeal to the cancellation property of addition: <span class="math inline"><em>a</em> + <em>c</em> = <em>b</em> + <em>c</em> ⇒ <em>a</em> = <em>b</em></span></li> +<li>We rearrange the term, bringing the appropriate part of <code>y</code> into contact with the appropriate part of <code>z</code> and <code>x</code> to transform the term.</li> +</ol> +<p>Here we use the idris library <a href="http://www.github.com/frex-project/idris-frex"><code>Frex</code></a> that can perform such routine rearrangements for common algebraic structures. In this case, we use the commutative monoid simplifier from <code>Frex</code>. If you want to read more about <code>Frex</code>, check the <a href="https://www.denotational.co.uk/drafts/allais-brady-corbyn-kammar-yallop-frex-dependently-typed-algebraic-simplification.pdf">paper</a> out.</p> +<p>Idris’s <code>Control.Relation</code> defines interfaces for properties like reflexivity and transitivity. While the setoid package doesn’t use them, we’ll use them in a few examples.</p> +<p>The <code>Overlap</code> relation from Examples 1 and 2 is symmetric: <code class="IdrisCode"> Sy<span class="IdrisFunction">mmetric (</span>L<span class="IdrisBound">ist a) Overlap</span> <span class="IdrisKeyword">w</span>h<span class="IdrisData">ere</span><br /> sy<span class="IdrisKeyword">m</span>m<span class="IdrisBound">etric </span>x<span class="IdrisKeyword">s</span>_<span class="IdrisBound">overlaps_ys = </span><span class="IdrisFunction">Overlap</span>ping<br /> <span class="IdrisKeyword">{</span> <span class="IdrisBound">common</span> <span class="IdrisKeyword">=</span> <span class="IdrisBound">xs_overlaps_ys</span><span class="IdrisFunction">.common</span><br /> <span class="IdrisKeyword">,</span> <span class="IdrisBound">lhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisBound">xs_overlaps_ys</span><span class="IdrisFunction">.rhsPos</span><br /> <span class="IdrisKeyword">,</span> rhsPos = xs_overlaps_ys.lhsPos<br /> }<br /> </code> However, <code>Overlap</code> is neither reflexive nor transitive:</p> +<ul> +<li><p>The empty list doesn’t overlap with itself: <code class="IdrisCode"> <span class="IdrisFunction">Ex3</span> <span class="IdrisBound">: Not (Overlap [</span>]<span class="IdrisKeyword"> </span>[<span class="IdrisKeyword">])</span><br /> Ex<span class="IdrisKeyword">3</span> <span class="IdrisKeyword">nil_overla</span>ps_nil = case nil_overlaps_nil.lhsPos of<br /> _ impossible<br /> </code></p></li> +<li><p>Two lists may overlap with a middle list, but on different elements. For example: <code class="IdrisCode"> Ex4 : <span class="IdrisType">(</span> <span class="IdrisType">Overlap</span> <span class="IdrisData">[1] [</span>1<span class="IdrisData">,2]</span><br /> <span class="IdrisType">,</span> <span class="IdrisFunction">Ove</span>r<span class="IdrisKeyword">l</span><span class="IdrisType">ap [1,2</span>]<span class="IdrisData"> [2</span>]<br /> <span class="IdrisFunction"> </span> <span class="IdrisKeyword"> </span> , Not (Overlap [1] [2]))<br /> Ex<span class="IdrisKeyword">4</span> <span class="IdrisData">=</span><br /> <span class="IdrisData">(</span> <span class="IdrisData">Overlapping</span> <span class="IdrisData">1</span> <span class="IdrisKeyword">H</span><span class="IdrisData">ere H</span>e<span class="IdrisData">re</span><br /> <span class="IdrisData">,</span> <span class="IdrisKeyword">O</span>v<span class="IdrisBound">erlapping 2 (The</span>r<span class="IdrisKeyword">e </span>H<span class="IdrisKeyword">ere)</span> <span class="IdrisBound">Here</span><br /> , <span class=“IdrisData”> one_</span>o<span class="IdrisKeyword">v</span>e<span class="IdrisKeyword">rlaps_two </span>=> case one_overlaps_two.lhsPos of<br /> <span class="IdrisKeyword"> </span> There _ impossible<br /> )<br /> </code> The outer lists agree on <code>1</code> and <code>2</code>, respectively, but they can’t overlap on on the first element of either, which exhausts all possibilities of overlap.</p></li> +</ul> diff --git a/doc/Tutorial.md b/doc/Tutorial.md new file mode 100644 index 0000000..c0d0896 --- /dev/null +++ b/doc/Tutorial.md @@ -0,0 +1,270 @@ +<style> +.IdrisData { + color: darkred +} +.IdrisType { + color: blue +} +.IdrisBound { + color: black +} +.IdrisFunction { + color: darkgreen +} +.IdrisKeyword { + font-weight: bold; +} +.IdrisComment { + color: #b22222 +} +.IdrisNamespace { + font-style: italic; + color: black +} +.IdrisPostulate { + font-weight: bold; + color: red +} +.IdrisModule { + font-style: italic; + color: black +} +.IdrisCode { + display: block; + background-color: whitesmoke; +} +</style> + +# Tutorial: Setoids + +A _setoid_ is a type equipped with an equivalence relation. Setoids come up when +you need types with a better behaved equality relation, or when you want the +equality relation to carry additional information. After completing this +tutorial you will: + +1. Know the user interface to the `setoid` package. +2. Know two different applications in which it can be used: + + constructing types with an equality relation that's better behaved than + Idris's built-in `Equal` type. + + + types with an equality relation that carries additional information + +If you want to see the source-code behind this tutorial, check the +[source-code](sources/Tutorial.md) out. + +## Equivalence relations + +A _relation_ over a type `ty` in Idris is any two-argument type-valued function: +``` +namespace Control.Relation + Rel : Type -> Type + Rel ty = ty -> ty -> Type +``` +This definition and its associated interfaces ship with idris's standard +library. Given a relation `rel : Rel ty` and `x,y : ty`, we can form +```x `rel` y : Type```: the type of ways in which `x` and `y` can be related. + +For example, two lists _overlap_ when they have a common element: +<code class="IdrisCode"> +<span class="IdrisKeyword">record</span> <span class="IdrisType">Overlap</span> <span class="IdrisKeyword">{0</span> <span class="IdrisBound">a</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">Type</span><span class="IdrisKeyword">}</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">xs</span><span class="IdrisKeyword">,</span><span class="IdrisBound">ys</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">List</span> <span class="IdrisBound">a</span><span class="IdrisKeyword">)</span> <span class="IdrisKeyword">where</span><br /> + constructor <span class="IdrisData">Overlapping</span><br /> + <span class="IdrisFunction">common</span> <span class="IdrisKeyword">:</span> <span class="IdrisBound">a</span><br /> + <span class="IdrisFunction">lhsPos</span> <span class="IdrisKeyword">:</span> <span class="IdrisBound">common</span> <span class="IdrisType">`Elem`</span> <span class="IdrisBound">xs</span><br /> + <span class="IdrisFunction">rhsPos</span> <span class="IdrisKeyword">:</span> <span class="IdrisBound">common</span> <span class="IdrisType">`Elem`</span> <span class="IdrisBound">ys</span><br /> +<br /> +</code> +Lists can overlap in exactly one position: +<code class="IdrisCode"> +<span class="IdrisFunction">Ex1</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">Overlap</span> <span class="IdrisData">[1,2,3]</span> <span class="IdrisData">[6,7,2,8]</span><br /> +<span class="IdrisFunction">Ex1</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">Overlapping</span><br /> + <span class="IdrisKeyword">{</span> <span class="IdrisBound">common</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">2</span><br /> + <span class="IdrisKeyword">,</span> <span class="IdrisBound">lhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">There</span> <span class="IdrisData">Here</span><br /> + <span class="IdrisKeyword">,</span> <span class="IdrisBound">rhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">There</span> <span class="IdrisKeyword">(</span><span class="IdrisData">There</span> <span class="IdrisData">Here</span><span class="IdrisKeyword">)</span><br /> + <span class="IdrisKeyword">}</span><br /> +</code> +But they can overlap in several ways: +<code class="IdrisCode"> +<span class="IdrisFunction">Ex2a</span> <span class="IdrisKeyword">,</span><br /> +<span class="IdrisFunction">Ex2b</span> <span class="IdrisKeyword">,</span><br /> +<span class="IdrisFunction">Ex2c</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">Overlap</span> <span class="IdrisData">[1,2,3]</span> <span class="IdrisData">[2,3,2]</span><br /> +<span class="IdrisFunction">Ex2a</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">Overlapping</span><br /> + <span class="IdrisKeyword">{</span> <span class="IdrisBound">common</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">3</span><br /> + <span class="IdrisKeyword">,</span> <span class="IdrisBound">lhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">There</span> <span class="IdrisKeyword">(</span><span class="IdrisData">There</span> <span class="IdrisData">Here</span><span class="IdrisKeyword">)</span><br /> + <span class="IdrisKeyword">,</span> <span class="IdrisBound">rhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">There</span> <span class="IdrisData">Here</span><br /> + <span class="IdrisKeyword">}</span><br /> +<span class="IdrisFunction">Ex2b</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">Overlapping</span><br /> + <span class="IdrisKeyword">{</span> <span class="IdrisBound">common</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">2</span><br /> + <span class="IdrisKeyword">,</span> <span class="IdrisBound">lhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">There</span> <span class="IdrisData">Here</span><br /> + <span class="IdrisKeyword">,</span> <span class="IdrisBound">rhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">Here</span><br /> + <span class="IdrisKeyword">}</span><br /> +<span class="IdrisFunction">Ex2c</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">Overlapping</span><br /> + <span class="IdrisKeyword">{</span> <span class="IdrisBound">common</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">2</span><br /> + <span class="IdrisKeyword">,</span> <span class="IdrisBound">lhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">There</span> <span class="IdrisData">Here</span><br /> + <span class="IdrisKeyword">,</span> <span class="IdrisBound">rhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">There</span> <span class="IdrisKeyword">(</span><span class="IdrisData">There</span> <span class="IdrisData">Here</span><span class="IdrisKeyword">)</span><br /> + <span class="IdrisKeyword">}</span><br /> +</code> +We can think of a relation `rel : Rel ty` as the type of edges in a directed +graph between vertices in `ty`: + +* edges have a direction: the type `rel x y` is different to `rel y x` + +* multiple different edges between the same vertices `e1, e2 : rel x y` + +* self-loops between the same vertex are allowed `loop : rel x x`. + +An _equivalence relation_ is a relation that's: + +* _reflexive_: we guarantee a specific way in which every element is related to + itself; + +* _symmetric_: we can reverse an edge between two edges; and + +* _transitive_: we can compose paths of related elements into a single edge. + +<code class="IdrisCode"> +<span class="IdrisKeyword">record</span> <span class="IdrisType">Equivalence</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">A</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">Type</span><span class="IdrisKeyword">)</span> <span class="IdrisKeyword">where</span><br /> + constructor <span class="IdrisData">MkEquivalence</span><br /> + <span class="IdrisKeyword">0</span> <span class="IdrisFunction">relation</span><span class="IdrisKeyword">:</span> <span class="IdrisFunction">Rel</span> <span class="IdrisBound">A</span><br /> + <span class="IdrisFunction">reflexive</span> <span class="IdrisKeyword">:</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">x</span> <span class="IdrisKeyword">:</span> <span class="IdrisBound">A</span><span class="IdrisKeyword">)</span> <span class="IdrisKeyword">-></span> <span class="IdrisBound">relation</span> <span class="IdrisBound">x</span> <span class="IdrisBound">x</span><br /> + <span class="IdrisFunction">symmetric</span> <span class="IdrisKeyword">:</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span> <span class="IdrisBound">y</span> <span class="IdrisKeyword">:</span> <span class="IdrisBound">A</span><span class="IdrisKeyword">)</span> <span class="IdrisKeyword">-></span> <span class="IdrisBound">relation</span> <span class="IdrisBound">x</span> <span class="IdrisBound">y</span> <span class="IdrisKeyword">-></span> <span class="IdrisBound">relation</span> <span class="IdrisBound">y</span> <span class="IdrisBound">x</span><br /> + <span class="IdrisFunction">transitive</span><span class="IdrisKeyword">:</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span> <span class="IdrisBound">y</span><span class="IdrisKeyword">,</span> <span class="IdrisBound">z</span> <span class="IdrisKeyword">:</span> <span class="IdrisBound">A</span><span class="IdrisKeyword">)</span> <span class="IdrisKeyword">-></span> <span class="IdrisBound">relation</span> <span class="IdrisBound">x</span> <span class="IdrisBound">y</span> <span class="IdrisKeyword">-></span> <span class="IdrisBound">relation</span> <span class="IdrisBound">y</span> <span class="IdrisBound">z</span><br /> + <span class="IdrisKeyword">-></span> <span class="IdrisBound">relation</span> <span class="IdrisBound">x</span> <span class="IdrisBound">z</span><br /> +</code> + +We equip the built-in relation `Equal` with the structure of an equivalence +relation, using the constructor `Refl` and the stdlib functions `sym`, and +`trans`: +<code class="IdrisCode"> +<span class="IdrisFunction">EqualityEquivalence</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">Equivalence</span> <span class="IdrisBound">a</span><br /> +<span class="IdrisFunction">EqualityEquivalence</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">MkEquivalence</span><br /> + <span class="IdrisKeyword">{</span> <span class="IdrisBound">relation</span> <span class="IdrisKeyword">=</span> <span class="IdrisFunction">(===)</span><br /> + <span class="IdrisKeyword">,</span> <span class="IdrisBound">reflexive</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword">\</span><span class="IdrisBound">x</span> <span class="IdrisKeyword">=></span> <span class="IdrisData">Refl</span><br /> + <span class="IdrisKeyword">,</span> <span class="IdrisBound">symmetric</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword">\</span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">x\_eq\_y</span> <span class="IdrisKeyword">=></span> <span class="IdrisFunction">sym</span> <span class="IdrisBound">x\_eq\_y</span><br /> + <span class="IdrisKeyword">,</span> <span class="IdrisBound">transitive</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword">\</span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">z</span><span class="IdrisKeyword">,</span><span class="IdrisBound">x\_eq\_y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y\_eq\_z</span> <span class="IdrisKeyword">=></span> <span class="IdrisFunction">trans</span> <span class="IdrisBound">x\_eq\_y</span> <span class="IdrisBound">y\_eq\_z</span><br /> + <span class="IdrisKeyword">}</span><br /> +</code> + +We'll use the following relation on pairs of natural numbers as a running +example. We can represent an integer as the difference between a pair of natural +numbers: +<code class="IdrisCode"> +<span class="IdrisKeyword">infix</span> <span class="IdrisKeyword">8</span> .-.<br /> +<br /> +<span class="IdrisKeyword">record</span> <span class="IdrisType">INT</span> <span class="IdrisKeyword">where</span><br /> + constructor <span class="IdrisData">(.-.)</span><br /> + <span class="IdrisFunction">pos</span><span class="IdrisKeyword">,</span> <span class="IdrisFunction">neg</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">Nat</span><br /> +<br /> +<span class="IdrisKeyword">record</span> <span class="IdrisType">SameDiff</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span> <span class="IdrisBound">y</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">INT</span><span class="IdrisKeyword">)</span> <span class="IdrisKeyword">where</span><br /> + constructor <span class="IdrisData">Check</span><br /> + <span class="IdrisFunction">same</span> <span class="IdrisKeyword">:</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">x</span><span class="IdrisFunction">.pos + </span><span class="IdrisBound">y</span><span class="IdrisFunction">.neg === </span><span class="IdrisBound">y</span><span class="IdrisFunction">.pos + </span><span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span><span class="IdrisKeyword">)</span><br /> +</code> +The `SameDiff x y` relation is equivalent to mathematical equation that states +that the difference between the positive and negative parts is identical: +$$x_{pos} - x_{neg} = y_{pos} - y_{neg}$$ +But, unlike the last equation which requires us to define integers and +subtraction, its equivalent `(.same)` is expressed using only addition, and +so addition on `Nat` is enough. + +The relation `SameDiff` is an equivalence relation. The proofs are +straightforward, and a good opportunity to practice Idris's equational +reasoning combinators from `Syntax.PreorderReasoning`: +<code class="IdrisCode"> +<span class="IdrisFunction">SameDiffEquivalence</span> <span class="IdrisKeyword">:</span> <span class="IdrisType">Equivalence</span> <span class="IdrisType">INT</span><br /> +<span class="IdrisFunction">SameDiffEquivalence</span> <span class="IdrisKeyword">=</span> <span class="IdrisData">MkEquivalence</span><br /> + <span class="IdrisKeyword">{</span> <span class="IdrisBound">relation</span> <span class="IdrisKeyword">=</span> <span class="IdrisType">SameDiff</span><br /> + <span class="IdrisKeyword">,</span> <span class="IdrisBound">reflexive</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword">\</span><span class="IdrisBound">x</span> <span class="IdrisKeyword">=></span> <span class="IdrisData">Check</span> $ <span class="IdrisFunction">Calc</span> $<br /> + <span class="IdrisData">|~</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span><br /> + <span class="IdrisData">~~</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span> <span class="IdrisData">...</span><span class="IdrisKeyword">(</span><span class="IdrisData">Refl</span><span class="IdrisKeyword">)</span><br /> +</code> +This equational proof represents the single-step equational proof: + +"Calculate: + +1. $x_{pos} + x_{neg}$ +2. $= x_{pos} + x_{neg}$ (by reflexivity)" + +The mnemonic behind the ASCII-art is that the first step in the proof +starts with a logical-judgement symbol $\vdash$, each step continues with an +equality sign $=$, and justified by a thought bubble `(...)`. + +<code class="IdrisCode"> + <span class="IdrisKeyword">,</span> <span class="IdrisBound">symmetric</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword">\</span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">x\_eq\_y</span> <span class="IdrisKeyword">=></span> <span class="IdrisData">Check</span> $ <span class="IdrisFunction">Calc</span> $<br /> + <span class="IdrisData">|~</span> <span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span><br /> + <span class="IdrisData">~~</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">y</span><span class="IdrisFunction">.neg</span> <span class="IdrisFunction">..<</span><span class="IdrisKeyword">(</span><span class="IdrisBound">x\_eq\_y</span><span class="IdrisFunction">.same</span><span class="IdrisKeyword">)</span><br /> +</code> + In this proof, we were given the proof `x_eq_y.same : x.pos + y.neg = y.pos + x.neg` + and so we appealed to the symmetric equation. The mnemonic here is that the + last bubble in the thought bubble `(...)` is replace with a left-pointing arrow, + reversing the reasoning step. +<code class="IdrisCode"> + <span class="IdrisKeyword">,</span> <span class="IdrisBound">transitive</span> <span class="IdrisKeyword">=</span> <span class="IdrisKeyword">\</span><span class="IdrisBound">x</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">z</span><span class="IdrisKeyword">,</span><span class="IdrisBound">x\_eq\_y</span><span class="IdrisKeyword">,</span><span class="IdrisBound">y\_eq\_z</span> <span class="IdrisKeyword">=></span> <span class="IdrisData">Check</span> $ <span class="IdrisFunction">plusRightCancel</span> <span class="IdrisKeyword">\_</span> <span class="IdrisKeyword">\_</span> <span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span><br /> + $ <span class="IdrisFunction">Calc</span> $<br /> + <span class="IdrisData">|~</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">z</span><span class="IdrisFunction">.neg</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span><br /> + <span class="IdrisData">~~</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">z</span><span class="IdrisFunction">.neg</span><span class="IdrisKeyword">)</span> <span class="IdrisData">...</span><span class="IdrisKeyword">(</span><span class="IdrisFunction">solve</span> <span class="IdrisData">3</span> <span class="IdrisFunction">Monoid.Commutative.Free.Free</span><br /> + <span class="IdrisKeyword">{</span><span class="IdrisBound">a</span> <span class="IdrisKeyword">=</span> <span class="IdrisFunction">Nat.Additive</span><span class="IdrisKeyword">}</span> $<br /> + <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">0</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">1</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">2</span><br /> + <span class="IdrisFunction">=-=</span> <span class="IdrisFunction">X</span> <span class="IdrisData">0</span> <span class="IdrisFunction">.+.</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">2</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">1</span><span class="IdrisKeyword">))</span><br /> + <span class="IdrisData">~~</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">z</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">y</span><span class="IdrisFunction">.neg</span><span class="IdrisKeyword">)</span> <span class="IdrisData">...</span><span class="IdrisKeyword">(</span><span class="IdrisFunction">cong</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span><span class="IdrisKeyword">)</span> $ <span class="IdrisBound">y\_eq\_z</span><span class="IdrisFunction">.same</span><span class="IdrisKeyword">)</span><br /> + <span class="IdrisData">~~</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">x</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">y</span><span class="IdrisFunction">.neg</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">z</span><span class="IdrisFunction">.pos</span> <span class="IdrisData">...</span><span class="IdrisKeyword">(</span><span class="IdrisFunction">solve</span> <span class="IdrisData">3</span> <span class="IdrisFunction">Monoid.Commutative.Free.Free</span><br /> + <span class="IdrisKeyword">{</span><span class="IdrisBound">a</span> <span class="IdrisKeyword">=</span> <span class="IdrisFunction">Nat.Additive</span><span class="IdrisKeyword">}</span> $<br /> + <span class="IdrisFunction">X</span> <span class="IdrisData">0</span> <span class="IdrisFunction">.+.</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">1</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">2</span><span class="IdrisKeyword">)</span><br /> + <span class="IdrisFunction">=-=</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">0</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">2</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">1</span><span class="IdrisKeyword">)</span><br /> + <span class="IdrisData">~~</span> <span class="IdrisKeyword">(</span><span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">z</span><span class="IdrisFunction">.pos</span> <span class="IdrisData">...</span><span class="IdrisKeyword">(</span><span class="IdrisFunction">cong</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">+</span> <span class="IdrisBound">z</span><span class="IdrisFunction">.pos</span><span class="IdrisKeyword">)</span> ?h2<span class="IdrisKeyword">)</span><br /> + <span class="IdrisData">~~</span> <span class="IdrisBound">z</span><span class="IdrisFunction">.pos</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">x</span><span class="IdrisFunction">.neg</span> <span class="IdrisFunction">+</span> <span class="IdrisBound">y</span><span class="IdrisFunction">.pos</span> <span class="IdrisData">...</span><span class="IdrisKeyword">(</span><span class="IdrisFunction">solve</span> <span class="IdrisData">3</span> <span class="IdrisFunction">Monoid.Commutative.Free.Free</span><br /> + <span class="IdrisKeyword">{</span><span class="IdrisBound">a</span> <span class="IdrisKeyword">=</span> <span class="IdrisFunction">Nat.Additive</span><span class="IdrisKeyword">}</span> $<br /> + <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">0</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">1</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">2</span><br /> + <span class="IdrisFunction">=-=</span> <span class="IdrisKeyword">(</span><span class="IdrisFunction">X</span> <span class="IdrisData">2</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">1</span><span class="IdrisKeyword">)</span> <span class="IdrisFunction">.+.</span> <span class="IdrisFunction">X</span> <span class="IdrisData">0</span><span class="IdrisKeyword">)</span><br /> + <span class="IdrisKeyword">}</span><br /> +</code> +This proof is a lot more involved: + +1. We appeal to the cancellation property of addition: + $a + c = b + c \Rightarrow a = b$ +2. We rearrange the term, bringing the appropriate part of `y` into contact with + the appropriate part of `z` and `x` to transform the term. + +Here we use the idris library [`Frex`](http://www.github.com/frex-project/idris-frex) +that can perform such routine +rearrangements for common algebraic structures. In this case, we use the +commutative monoid simplifier from `Frex`. +If you want to read more about `Frex`, check the +[paper](https://www.denotational.co.uk/drafts/allais-brady-corbyn-kammar-yallop-frex-dependently-typed-algebraic-simplification.pdf) out. + + +Idris's `Control.Relation` defines interfaces for properties like reflexivity +and transitivity. While the +setoid package doesn't use them, we'll use them in a few examples. + +The `Overlap` relation from Examples 1 and 2 is symmetric: +<code class="IdrisCode"> +Sy<span class="IdrisFunction">mmetric (</span>L<span class="IdrisBound">ist a) Overlap</span> <span class="IdrisKeyword">w</span>h<span class="IdrisData">ere</span><br /> + sy<span class="IdrisKeyword">m</span>m<span class="IdrisBound">etric </span>x<span class="IdrisKeyword">s</span>\_<span class="IdrisBound">overlaps\_ys = </span><span class="IdrisFunction">Overlap</span>ping<br /> + <span class="IdrisKeyword">{</span> <span class="IdrisBound">common</span> <span class="IdrisKeyword">=</span> <span class="IdrisBound">xs\_overlaps\_ys</span><span class="IdrisFunction">.common</span><br /> + <span class="IdrisKeyword">,</span> <span class="IdrisBound">lhsPos</span> <span class="IdrisKeyword">=</span> <span class="IdrisBound">xs\_overlaps\_ys</span><span class="IdrisFunction">.rhsPos</span><br /> + <span class="IdrisKeyword">,</span> rhsPos = xs\_overlaps\_ys.lhsPos<br /> + }<br /> +</code> +However, `Overlap` is neither reflexive nor transitive: + +* The empty list doesn't overlap with itself: +<code class="IdrisCode"> +<span class="IdrisFunction">Ex3</span> <span class="IdrisBound">: Not (Overlap [</span>]<span class="IdrisKeyword"> </span>[<span class="IdrisKeyword">])</span><br /> +Ex<span class="IdrisKeyword">3</span> <span class="IdrisKeyword">nil\_overla</span>ps\_nil = case nil\_overlaps\_nil.lhsPos of<br /> + \_ impossible<br /> +</code> + +* Two lists may overlap with a middle list, but on different elements. For example: +<code class="IdrisCode"> +Ex4 : <span class="IdrisType">(</span> <span class="IdrisType">Overlap</span> <span class="IdrisData">[1] [</span>1<span class="IdrisData">,2]</span><br /> + <span class="IdrisType">,</span> <span class="IdrisFunction">Ove</span>r<span class="IdrisKeyword">l</span><span class="IdrisType">ap [1,2</span>]<span class="IdrisData"> [2</span>]<br /> +<span class="IdrisFunction"> </span> <span class="IdrisKeyword"> </span> , Not (Overlap [1] [2]))<br /> +Ex<span class="IdrisKeyword">4</span> <span class="IdrisData">=</span><br /> + <span class="IdrisData">(</span> <span class="IdrisData">Overlapping</span> <span class="IdrisData">1</span> <span class="IdrisKeyword">H</span><span class="IdrisData">ere H</span>e<span class="IdrisData">re</span><br /> + <span class="IdrisData">,</span> <span class="IdrisKeyword">O</span>v<span class="IdrisBound">erlapping 2 (The</span>r<span class="IdrisKeyword">e </span>H<span class="IdrisKeyword">ere)</span> <span class="IdrisBound">Here</span><br /> + , \<span class="IdrisData"> one\_</span>o<span class="IdrisKeyword">v</span>e<span class="IdrisKeyword">rlaps\_two </span>=> case one\_overlaps\_two.lhsPos of<br /> + <span class="IdrisKeyword"> </span> There \_ impossible<br /> + )<br /> +</code> +The outer lists agree on `1` and `2`, respectively, but they can't overlap on +on the first element of either, which exhausts all possibilities of overlap. + diff --git a/doc/pack.toml b/doc/pack.toml index d555f03..3aff702 100644 --- a/doc/pack.toml +++ b/doc/pack.toml @@ -1,4 +1,10 @@ -[doc.setoid] +[custom.all.setoid] type = "local" path = ".." ipkg = "setoid.ipkg" + +[custom.all.frex] +type = "github" +url = "https://github.com/frex-project/idris-frex" +commit = "latest:main" +ipkg = "frex.ipkg" diff --git a/doc/setoid-doc.ipkg b/doc/setoid-doc.ipkg index 5d183fd..b97fb59 100644 --- a/doc/setoid-doc.ipkg +++ b/doc/setoid-doc.ipkg @@ -13,8 +13,10 @@ authors = "Ohad Kammar" -- langversion -- packages to add to search path --- depends = - +depends + = contrib + , setoid + , frex modules = Tutorial diff --git a/doc/sources/Tutorial.md b/doc/sources/Tutorial.md index f143d45..85b09c8 100644 --- a/doc/sources/Tutorial.md +++ b/doc/sources/Tutorial.md @@ -1,5 +1,17 @@ ```idris hide module Tutorial + +import Data.Setoid +import Syntax.PreorderReasoning +import Syntax.PreorderReasoning.Setoid +import Data.List.Elem +import Data.List +import Data.Nat +import Frex +import Frexlet.Monoid.Commutative +import Notation.Additive +import Frexlet.Monoid.Notation.Additive +import Frexlet.Monoid.Commutative.Nat ``` # Tutorial: Setoids @@ -15,7 +27,223 @@ tutorial you will: + types with an equality relation that carries additional information -## Basic interface +If you want to see the source-code behind this tutorial, check the +[source-code](sources/Tutorial.md) out. + +## Equivalence relations + +A _relation_ over a type `ty` in Idris is any two-argument type-valued function: +``` +namespace Control.Relation + Rel : Type -> Type + Rel ty = ty -> ty -> Type +``` +This definition and its associated interfaces ship with idris's standard +library. Given a relation `rel : Rel ty` and `x,y : ty`, we can form +```x `rel` y : Type```: the type of ways in which `x` and `y` can be related. + +For example, two lists _overlap_ when they have a common element: +```idris +record Overlap {0 a : Type} (xs,ys : List a) where + constructor Overlapping + common : a + lhsPos : common `Elem` xs + rhsPos : common `Elem` ys + +``` +Lists can overlap in exactly one position: +```idris +Ex1 : Overlap [1,2,3] [6,7,2,8] +Ex1 = Overlapping + { common = 2 + , lhsPos = There Here + , rhsPos = There (There Here) + } +``` +But they can overlap in several ways: ```idris +Ex2a , +Ex2b , +Ex2c : Overlap [1,2,3] [2,3,2] +Ex2a = Overlapping + { common = 3 + , lhsPos = There (There Here) + , rhsPos = There Here + } +Ex2b = Overlapping + { common = 2 + , lhsPos = There Here + , rhsPos = Here + } +Ex2c = Overlapping + { common = 2 + , lhsPos = There Here + , rhsPos = There (There Here) + } +``` +We can think of a relation `rel : Rel ty` as the type of edges in a directed +graph between vertices in `ty`: + +* edges have a direction: the type `rel x y` is different to `rel y x` + +* multiple different edges between the same vertices `e1, e2 : rel x y` +* self-loops between the same vertex are allowed `loop : rel x x`. + +An _equivalence relation_ is a relation that's: + +* _reflexive_: we guarantee a specific way in which every element is related to + itself; + +* _symmetric_: we can reverse an edge between two edges; and + +* _transitive_: we can compose paths of related elements into a single edge. + +```idris +record Equivalence (A : Type) where + constructor MkEquivalence + 0 relation: Rel A + reflexive : (x : A) -> relation x x + symmetric : (x, y : A) -> relation x y -> relation y x + transitive: (x, y, z : A) -> relation x y -> relation y z + -> relation x z +``` +```idris hide +%hide Tutorial.Equivalence +``` +We equip the built-in relation `Equal` with the structure of an equivalence +relation, using the constructor `Refl` and the stdlib functions `sym`, and +`trans`: +```idris +EqualityEquivalence : Equivalence a +EqualityEquivalence = MkEquivalence + { relation = (===) + , reflexive = \x => Refl + , symmetric = \x,y,x_eq_y => sym x_eq_y + , transitive = \x,y,z,x_eq_y,y_eq_z => trans x_eq_y y_eq_z + } +``` + +We'll use the following relation on pairs of natural numbers as a running +example. We can represent an integer as the difference between a pair of natural +numbers: +```idris +infix 8 .-. + +record INT where + constructor (.-.) + pos, neg : Nat + +record SameDiff (x, y : INT) where + constructor Check + same : (x.pos + y.neg === y.pos + x.neg) +``` +The `SameDiff x y` relation is equivalent to mathematical equation that states +that the difference between the positive and negative parts is identical: +$$x_{pos} - x_{neg} = y_{pos} - y_{neg}$$ +But, unlike the last equation which requires us to define integers and +subtraction, its equivalent `(.same)` is expressed using only addition, and +so addition on `Nat` is enough. + +The relation `SameDiff` is an equivalence relation. The proofs are +straightforward, and a good opportunity to practice Idris's equational +reasoning combinators from `Syntax.PreorderReasoning`: +```idris +SameDiffEquivalence : Equivalence INT +SameDiffEquivalence = MkEquivalence + { relation = SameDiff + , reflexive = \x => Check $ Calc $ + |~ x.pos + x.neg + ~~ x.pos + x.neg ...(Refl) +``` +This equational proof represents the single-step equational proof: + +"Calculate: + +1. $x_{pos} + x_{neg}$ +2. $= x_{pos} + x_{neg}$ (by reflexivity)" + +The mnemonic behind the ASCII-art is that the first step in the proof +starts with a logical-judgement symbol $\vdash$, each step continues with an +equality sign $=$, and justified by a thought bubble `(...)`. + +```idris + , symmetric = \x,y,x_eq_y => Check $ Calc $ + |~ y.pos + x.neg + ~~ x.pos + y.neg ..<(x_eq_y.same) +``` + In this proof, we were given the proof `x_eq_y.same : x.pos + y.neg = y.pos + x.neg` + and so we appealed to the symmetric equation. The mnemonic here is that the + last bubble in the thought bubble `(...)` is replace with a left-pointing arrow, + reversing the reasoning step. +```idris + , transitive = \x,y,z,x_eq_y,y_eq_z => Check $ plusRightCancel _ _ y.pos + $ Calc $ + |~ x.pos + z.neg + y.pos + ~~ x.pos + (y.pos + z.neg) ...(solve 3 Monoid.Commutative.Free.Free + {a = Nat.Additive} $ + (X 0 .+. X 1) .+. X 2 + =-= X 0 .+. (X 2 .+. X 1)) + ~~ x.pos + (z.pos + y.neg) ...(cong (x.pos +) $ y_eq_z.same) + ~~ (x.pos + y.neg) + z.pos ...(solve 3 Monoid.Commutative.Free.Free + {a = Nat.Additive} $ + X 0 .+. (X 1 .+. X 2) + =-= (X 0 .+. X 2) .+. X 1) + ~~ (y.pos + x.neg) + z.pos ...(cong (+ z.pos) ?h2) + ~~ z.pos + x.neg + y.pos ...(solve 3 Monoid.Commutative.Free.Free + {a = Nat.Additive} $ + (X 0 .+. X 1) .+. X 2 + =-= (X 2 .+. X 1) .+. X 0) + } +``` +This proof is a lot more involved: + +1. We appeal to the cancellation property of addition: + $a + c = b + c \Rightarrow a = b$ +2. We rearrange the term, bringing the appropriate part of `y` into contact with + the appropriate part of `z` and `x` to transform the term. + +Here we use the idris library [`Frex`](http://www.github.com/frex-project/idris-frex) +that can perform such routine +rearrangements for common algebraic structures. In this case, we use the +commutative monoid simplifier from `Frex`. +If you want to read more about `Frex`, check the +[paper](https://www.denotational.co.uk/drafts/allais-brady-corbyn-kammar-yallop-frex-dependently-typed-algebraic-simplification.pdf) out. + + +Idris's `Control.Relation` defines interfaces for properties like reflexivity +and transitivity. While the +setoid package doesn't use them, we'll use them in a few examples. + +The `Overlap` relation from Examples 1 and 2 is symmetric: +```idris +Symmetric (List a) Overlap where + symmetric xs_overlaps_ys = Overlapping + { common = xs_overlaps_ys.common + , lhsPos = xs_overlaps_ys.rhsPos + , rhsPos = xs_overlaps_ys.lhsPos + } +``` +However, `Overlap` is neither reflexive nor transitive: + +* The empty list doesn't overlap with itself: +```idris +Ex3 : Not (Overlap [] []) +Ex3 nil_overlaps_nil = case nil_overlaps_nil.lhsPos of + _ impossible +``` + +* Two lists may overlap with a middle list, but on different elements. For example: +```idris +Ex4 : ( Overlap [1] [1,2] + , Overlap [1,2] [2] + , Not (Overlap [1] [2])) +Ex4 = + ( Overlapping 1 Here Here + , Overlapping 2 (There Here) Here + , \ one_overlaps_two => case one_overlaps_two.lhsPos of + There _ impossible + ) ``` +The outer lists agree on `1` and `2`, respectively, but they can't overlap on +on the first element of either, which exhausts all possibilities of overlap. |